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PREFACE

Une des questions fondamentales que l’ingénieur des Matériaux se pose est de connaître le comporte-
ment d’un materiel sous l’effet de contraintes et la cause de sa rupture. En définitive, c’est précisément la
réponse à c/mat es deux questions qui vont guider le développement de nouveaux matériaux, et déterminer
leur survie sous différentes conditions physiques et environnementales.

L’ingénieur en Matériaux devra donc posséder une connaissance fondamentale de la Mécanique sur le
plan qualitatif, et être capable d’effectuer des simulations numériques (le plus souvent avec les Eléments
Finis) et d’en extraire les résultats quantitatifs pour un problème bien posé.

Selon l’humble opinion de l’auteur, ces nobles buts sont idéalement atteints en trois étapes. Pour
commencer, l’élève devra être confronté aux principes de base de la Mécanique des Milieux Continus.
Une présentation détaillée des contraintes, déformations, et principes fondamentaux est essentiel. Par
la suite une briefe introduction à l’Elasticité (ainsi qu’à la théorie des poutres) convaincra l’élève qu’un
problème général bien posé peut avoir une solution analytique. Par contre, ceci n’est vrai (à quelques
exceptions prêts) que pour des cas avec de nombreuses hypothèses qui simplifient le problème (élasticité
linéaire, petites déformations, contraintes/déformations planes, ou axisymmetrie). Ainsi, la troisième
et dernière étape consiste en une briefe introduction à la Mécanique des Solides, et plus précisément
au Calcul Variationel. A travers la méthode des Puissances Virtuelles, et celle de Rayleigh-Ritz, l’élève
sera enfin prêt à un autre cours d’éléments finis. Enfin, un sujet d’intérêt particulier aux étudiants en
Matériaux a été ajouté, à savoir la Résistance Théorique des Matériaux cristallins. Ce sujet est capital
pour une bonne compréhension de la rupture et servira de lien à un éventuel cours sur la Mécanique de
la Rupture.

Ce polycopié a été entièrement préparé par l’auteur durant son année sabbatique à l’Ecole Poly-
technique Fédérale de Lausanne, Département des Matériaux. Le cours était donné aux étudiants en
deuxième année en Français.

Ce polycopié a été écrit avec les objectifs suivants. Avant tout il doit être complet et rigoureux. A
tout moment, l’élève doit être à même de retrouver toutes les étapes suivies dans la dérivation d’une
équation. Ensuite, en allant à travers toutes les dérivations, l’élève sera à même de bien connaître les
limitations et hypothèses derrière chaque model. Enfin, la rigueur scientifique adoptée, pourra servir
d’exemple à la solution d’autres problèmes scientifiques que l’étudiant pourrait être emmené à résoudre
dans le futur. Ce dernier point est souvent négligé.

Le polycopié est subdivisé de façon très hiérarchique. Chaque concept est développé dans un para-
graphe séparé. Ceci devrait faciliter non seulement la compréhension, mais aussi le dialogue entres élevés
eux-mêmes ainsi qu’avec le Professeur.

Quand il a été jugé nécessaire, un bref rappel mathématique est introduit. De nombreux exemples
sont présentés, et enfin des exercices solutionnés avec Mathematica sont présentés dans l’annexe.

L’auteur ne se fait point d’illusions quand au complet et à l’exactitude de tout le polycopié. Il a été
entièrement développé durant une seule année académique, et pourrait donc bénéficier d’une révision
extensive. A ce titre, corrections et critiques seront les bienvenues.

Enfin, l’auteur voudrait remercier ses élevés qui ont diligemment suivis son cours sur la Mécanique
de Milieux Continus durant l’année académique 1997-1998, ainsi que le Professeur Huet qui a été son
hôte au Laboratoire des Matériaux de Construction de l’EPFL durant son séjour à Lausanne.

Victor Saouma
Ecublens, Juin 1998

Victor Saouma Introduction to Continuum Mechanics



Draft0–4

PREFACE

One of the most fundamental question that a Material Scientist has to ask him/herself is how a
material behaves under stress, and when does it break. Ultimately, it its the answer to those two
questions which would steer the development of new materials, and determine their survival in various
environmental and physical conditions.

The Material Scientist should then have a thorough understanding of the fundamentals of Mechanics
on the qualitative level, and be able to perform numerical simulation (most often by Finite Element
Method) and extract quantitative information for a specific problem.

In the humble opinion of the author, this is best achieved in three stages. First, the student should
be exposed to the basic principles of Continuum Mechanics. Detailed coverage of Stress, Strain, General
Principles, and Constitutive Relations is essential. Then, a brief exposure to Elasticity (along with Beam
Theory) would convince the student that a well posed problem can indeed have an analytical solution.
However, this is only true for problems problems with numerous simplifying assumptions (such as linear
elasticity, small deformation, plane stress/strain or axisymmetry, and resultants of stresses). Hence, the
last stage consists in a brief exposure to solid mechanics, and more precisely to Variational Methods.
Through an exposure to the Principle of Virtual Work, and the Rayleigh-Ritz Method the student will
then be ready for Finite Elements. Finally, one topic of special interest to Material Science students
was added, and that is the Theoretical Strength of Solids. This is essential to properly understand the
failure of solids, and would later on lead to a Fracture Mechanics course.

These lecture notes were prepared by the author during his sabbatical year at the Swiss Federal
Institute of Technology (Lausanne) in the Material Science Department. The course was offered to
second year undergraduate students in French, whereas the lecture notes are in English. The notes were
developed with the following objectives in mind. First they must be complete and rigorous. At any time,
a student should be able to trace back the development of an equation. Furthermore, by going through
all the derivations, the student would understand the limitations and assumptions behind every model.
Finally, the rigor adopted in the coverage of the subject should serve as an example to the students of
the rigor expected from them in solving other scientific or engineering problems. This last aspect is often
forgotten.

The notes are broken down into a very hierarchical format. Each concept is broken down into a small
section (a byte). This should not only facilitate comprehension, but also dialogue among the students
or with the instructor.

Whenever necessary, Mathematical preliminaries are introduced to make sure that the student is
equipped with the appropriate tools. Illustrative problems are introduced whenever possible, and last
but not least problem set using Mathematica is given in the Appendix.

The author has no illusion as to the completeness or exactness of all these set of notes. They were
entirely developed during a single academic year, and hence could greatly benefit from a thorough review.
As such, corrections, criticisms and comments are welcome.

Finally, the author would like to thank his students who bravely put up with him and Continuum
Mechanics in the AY 1997-1998, and Prof. Huet who was his host at the EPFL.

Victor E. Saouma
Ecublens, June 1998

Victor Saouma Introduction to Continuum Mechanics
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NOTATION

Symbol Definition Dimension SI Unit
SCALARS

A Area L2 m2

c Specific heat
e Volumetric strain N.D. -
E Elastic Modulus L−1MT−2 Pa
g Specicif free enthalpy L2T−2 JKg−1

h Film coefficient for convection heat transfer
h Specific enthalpy L2T−2 JKg−1

I Moment of inertia L4 m4

J Jacobian
K Bulk modulus L−1MT−2 Pa
K Kinetic Energy L2MT−2 J
L Length L m
p Pressure L−1MT−2 Pa
Q Rate of internal heat generation L2MT−3 W
r Radiant heat constant per unit mass per unit time MT−3L−4 Wm−6

s Specific entropy L2T−2Θ−1 JKg−1K−1

S Entropy ML2T−2Θ−1 JK−1

t Time T s
T Absolute temperature Θ K
u Specific internal energy L2T−2 JKg−1

U Energy L2MT−2 J
U∗ Complementary strain energy L2MT−2 J
W Work L2MT−2 J
W Potential of External Work L2MT−2 J
Π Potential energy L2MT−2 J
α Coefficient of thermal expansion Θ−1 T−1

µ Shear modulus L−1MT−2 Pa
ν Poisson’s ratio N.D. -
ρ mass density ML−3 Kgm−3

γij Shear strains N.D. -
1
2γij Engineering shear strain N.D. -
λ Lame’s coefficient L−1MT−2 Pa
Λ Stretch ratio N.D. -
µ G Lame’s coefficient L−1MT−2 Pa
λ Lame’s coefficient L−1MT−2 Pa
Φ Airy Stress Function
Ψ (Helmholtz) Free energy L2MT−2 J
Iσ, IE First stress and strain invariants
IIσ, IIE Second stress and strain invariants
IIIσ, IIIEThird stress and strain invariants
Θ Temperature Θ K

TENSORS order 1

b Body force per unit massLT−2 NKg−1

b Base transformation
q Heat flux per unit area MT−3 Wm−2

t Traction vector, Stress vector L−1MT−2 Pa

t̂ Specified tractions along Γt L−1MT−2 Pa
u Displacement vector L m
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û(x) Specified displacements along Γu L m
u Displacement vector L m
x Spatial coordinates L m
X Material coordinates L m
σ0 Initial stress vector L−1MT−2 Pa
σ(i) Principal stresses L−1MT−2 Pa

TENSORS order 2

B−1 Cauchy’s deformation tensor N.D. -
C Green’s deformation tensor; metric tensor,

right Cauchy-Green deformation tensor N.D. -
D Rate of deformation tensor; Stretching tensor N.D. -
E Lagrangian (or Green’s) finite strain tensor N.D. -
E∗ Eulerian (or Almansi) finite strain tensor N.D. -
E′ Strain deviator N.D. -
F Material deformation gradient N.D. -
H Spatial deformation gradient N.D. -
I Idendity matrix N.D. -
J Material displacement gradient N.D. -
k Thermal conductivity LMT−3Θ−1 Wm−1K−1

K Spatial displacement gradient N.D. -
L Spatial gradient of the velocity
R Orthogonal rotation tensor
T0 First Piola-Kirchoff stress tensor, Lagrangian Stress Tensor L−1MT−2 Pa

T̃ Second Piola-Kirchoff stress tensor L−1MT−2 Pa
U Right stretch tensor
V Left stretch tensor
W Spin tensor, vorticity tensor. Linear lagrangian rotation tensor
ε0 Initial strain vector
k Conductivity
κ Curvature
σ,T Cauchy stress tensor L−1MT−2 Pa
T′ Deviatoric stress tensor L−1MT−2 Pa
Ω Linear Eulerian rotation tensor
ω Linear Eulerian rotation vector

TENSORS order 4

D Constitutive matrix L−1MT−2 Pa

CONTOURS, SURFACES, VOLUMES

C Contour line
S Surface of a body L2 m2

Γ Surface L2 m2

Γt Boundary along which surface tractions, t are specified L2 m2

Γu Boundary along which displacements, u are specified L2 m2

ΓT Boundary along which temperatures, T are specified L2 m2

Γc Boundary along which convection flux, qc are specified L2 m2

Γq Boundary along which flux, qn are specified L2 m2

Ω, V Volume of body L3 m3

FUNCTIONS, OPERATORS
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ũ Neighbour function to u(x)
δ Variational operator
L Linear differential operator relating displacement to strains
∇φ Divergence, (gradient operator) on scalar � ∂φ

∂x
∂φ
∂y

∂φ
∂z �T

∇·u Divergence, (gradient operator) on vector (div . u = ∂ux

∂x + ∂uy

∂y + ∂uz

∂z

∇2 Laplacian Operator
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Chapter 1

MATHEMATICAL
PRELIMINARIES; Part I Vectors
and Tensors

1 Physical laws should be independent of the position and orientation of the observer. For this reason,
physical laws are vector equations or tensor equations, since both vectors and tensors transform
from one coordinate system to another in such a way that if the law holds in one coordinate system, it
holds in any other coordinate system.

1.1 Vectors

2 A vector is a directed line segment which can denote a variety of quantities, such as position of point
with respect to another (position vector), a force, or a traction.

3 A vector may be defined with respect to a particular coordinate system by specifying the components
of the vector in that system. The choice of the coordinate system is arbitrary, but some are more suitable
than others (axes corresponding to the major direction of the object being analyzed).

4 The rectangular Cartesian coordinate system is the most often used one (others are the cylin-
drical, spherical or curvilinear systems). The rectangular system is often represented by three mutually
perpendicular axes Oxyz, with corresponding unit vector triad i, j,k (or e1, e2, e3) such that:

i×j = k; j×k = i; k×i = j; (1.1-a)
i·i = j·j = k·k = 1 (1.1-b)
i·j = j·k = k·i = 0 (1.1-c)

Such a set of base vectors constitutes an orthonormal basis.

5 An arbitrary vector v may be expressed by

v = vxi+ vyj+ vzk (1.2)

where

vx = v·i = v cosα (1.3-a)
vy = v·j = v cosβ (1.3-b)
vz = v·k = v cos γ (1.3-c)

are the projections of v onto the coordinate axes, Fig. 1.1.
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V

α

β

γ X

Y

Z

Figure 1.1: Direction Cosines (to be corrected)

6 The unit vector in the direction of v is given by

ev =
v
v

= cosαi+ cosβj+ cos γk (1.4)

Since v is arbitrary, it follows that any unit vector will have direction cosines of that vector as its
Cartesian components.

7 The length or more precisely the magnitude of the vector is denoted by ‖ v ‖=
√
v2
1 + v2

2 + v2
3 .

8 We will denote the contravariant components of a vector by superscripts vk, and its covariant
components by subscripts vk (the significance of those terms will be clarified in Sect. 1.1.2.1.

1.1.1 Operations

Addition: of two vectors a+b is geometrically achieved by connecting the tail of the vector b with the
head of a, Fig. 1.2. Analytically the sum vector will have components � a1 + b1 a2 + b2 a3 + b3 �.

v

θ

u

u+v

Figure 1.2: Vector Addition

Scalar multiplication: αa will scale the vector into a new one with components � αa1 αa2 αa3 �.

Vector Multiplications of a and b comes in three varieties:
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Dot Product (or scalar product) is a scalar quantity which relates not only to the lengths of the
vector, but also to the angle between them.

a·b ≡‖ a ‖‖ b ‖ cos θ(a,b) =
3∑
i=1

aibi (1.5)

where cos θ(a,b) is the cosine of the angle between the vectors a and b. The dot product
measures the relative orientation between two vectors.
The dot product is both commutative

a·b = b·a (1.6)

and distributive
αa·(βb+ γc) = αβ(a·b) + αγ(a·c) (1.7)

The dot product of a with a unit vector n gives the projection of a in the direction of n.
The dot product of base vectors gives rise to the definition of the Kronecker delta defined
as

ei·ej = δij (1.8)

where

δij =
{

1 if i = j
0 if i �= j

(1.9)

Cross Product (or vector product) c of two vectors a and b is defined as the vector

c = a×b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (1.10)

which can be remembered from the determinant expansion of

a×b =

∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ (1.11)

and is equal to the area of the parallelogram described by a and b, Fig. 1.3.

a x b

a

b

A(a,b)=||a x b||

Figure 1.3: Cross Product of Two Vectors

A(a,b) =‖ a×b ‖ (1.12)
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The cross product is not commutative, but satisfies the condition of skew symmetry

a×b = −b×a (1.13)

The cross product is distributive

αa×(βb+ γc) = αβ(a×b) + αγ(a×c) (1.14)

Triple Scalar Product: of three vectors a, b, and c is desgnated by (a×b)·c and it corresponds
to the (scalar) volume defined by the three vectors, Fig. 1.4.

||a x b||

a

b

c

c.n

n=a x b

Figure 1.4: Cross Product of Two Vectors

V (a,b, c) = (a×b)·c = a·(b×c) (1.15)

=

∣∣∣∣∣∣
ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ (1.16)

The triple scalar product of base vectors represents a fundamental operation

(ei×ej)·ek = εijk ≡


1 if (i, j, k) are in cyclic order
0 if any of (i, j, k) are equal
−1 if (i, j, k) are in acyclic order

(1.17)

The scalars εijk is the permutation tensor. A cyclic permutation of 1,2,3 is 1 → 2 → 3 → 1,
an acyclic one would be 1 → 3 → 2 → 1. Using this notation, we can rewrite

c = a×b⇒ ci = εijkajbk (1.18)

Vector Triple Product is a cross product of two vectors, one of which is itself a cross product.

a×(b×c) = (a·c)b− (a·b)c = d (1.19)

and the product vector d lies in the plane of b and c.

1.1.2 Coordinate Transformation

1.1.2.1 †General Tensors

9 Let us consider two bases bj(x1, x2, x3) and bj(x1, x2x3), Fig. 1.5. Each unit vector in one basis must
be a linear combination of the vectors of the other basis

bj = apjbp and bk = bkqbq (1.20)
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(summed on p and q respectively) where apj (subscript new, superscript old) and bkq are the coefficients
for the forward and backward changes respectively from b to b respectively. Explicitly

e1

e2

e3

 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33


e1

e2

e3

 and


e1

e2

e3

 =

 a1
1 a2

1 a3
1

a1
2 a2

2 a3
2

a1
3 a2

3 a3
3


e1

e2

e3

 (1.21)

X
X

X 3

2

X

X

X

1

2

3

1

2

cos   a-1
1

Figure 1.5: Coordinate Transformation

10 The transformation must have the determinant of its Jacobian

J =

∣∣∣∣∣∣∣
∂x1

∂x1
∂x1

∂x2
∂x1

∂x3

∂x2

∂x1
∂x2

∂x2
∂x2

∂x3

∂x3

∂x1
∂x3

∂x2
∂x3

∂x3

∣∣∣∣∣∣∣ �= 0 (1.22)

different from zero (the superscript is a label and not an exponent).

11 It is important to note that so far, the coordinate systems are completely general and may be Carte-
sian, curvilinear, spherical or cylindrical.

1.1.2.1.1 †Contravariant Transformation

12 The vector representation in both systems must be the same

v = vqbq = vkbk = vk(bqkbq) ⇒ (vq − vkbqk)bq = 0 (1.23)

since the base vectors bq are linearly independent, the coefficients of bq must all be zero hence

vq = bqkv
k and inversely vp = apjv

j (1.24)

showing that the forward change from components vk to vq used the coefficients bqk of the backward
change from base bq to the original bk. This is why these components are called contravariant.

13 Generalizing, a Contravariant Tensor of order one (recognized by the use of the superscript)
transforms a set of quantities rk associated with point P in xk through a coordinate transformation into

Victor Saouma Introduction to Continuum Mechanics
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a new set rq associated with xq

rq =
∂xq

∂xk︸︷︷︸
bq

k

rk (1.25)

14 By extension, the Contravariant tensors of order two requires the tensor components to obey
the following transformation law

rij =
∂xi

∂xr
∂xj

∂xs
rrs (1.26)

1.1.2.1.2 Covariant Transformation

15 Similarly to Eq. 1.24, a covariant component transformation (recognized by subscript) will be
defined as

vj = apjvp and inversely vk = bkqvq (1.27)

We note that contrarily to the contravariant transformation, the covariant transformation uses the same
transformation coefficients as the ones for the base vectors.

16 Finally transformation of tensors of order one and two is accomplished through

rq =
∂xk

∂xq
rk (1.28)

rij =
∂xr

∂xi
∂xs

∂xj
rrs (1.29)

1.1.2.2 Cartesian Coordinate System

17 If we consider two different sets of cartesian orthonormal coordinate systems {e1, e2, e3} and {e1, e2, e3},
any vector v can be expressed in one system or the other

v = vjej = vjej (1.30)

18 To determine the relationship between the two sets of components, we consider the dot product of v
with one (any) of the base vectors

ei·v = vi = vj(ei·ej) (1.31)

(since vj(ej·ei) = vjδij = vi)

19 We can thus define the nine scalar values

aji ≡ ei·ej = cos(xi, xj) (1.32)

which arise from the dot products of base vectors as the direction cosines. (Since we have an or-
thonormal system, those values are nothing else than the cosines of the angles between the nine pairing
of base vectors.)

20 Thus, one set of vector components can be expressed in terms of the other through a covariant
transformation similar to the one of Eq. 1.27.
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vj = apjvp (1.33)

vk = bkqvq (1.34)

we note that the free index in the first and second equations appear on the upper and lower index
respectively.

21 Because of the orthogonality of the unit vector we have aspasq = δpq and amr a
n
r = δmn.

22 As a further illustration of the above derivation, let us consider the transformation of a vector V from
(X,Y,Z) coordinate system to (x,y, z), Fig. 1.6:

Figure 1.6: Arbitrary 3D Vector Transformation

23 Eq. 1.33 would then result in
Vx = aXx VX + aYx VY + aZx VZ (1.35)

or 
Vx
Vy
Vz

 =

 aXx aYx aZx
aXy aYy aZy
aXz aYz aZz


VX
VY
VZ

 (1.36)

and aji is the direction cosine of axis i with respect to axis j

• ajx = (axX, aYx , aZx ) direction cosines of x with respect to X,Y and Z

• ajy = (ayX, aYy , aZy ) direction cosines of y with respect to X,Y and Z

• ajz = (azX, aYz , a
Z
z ) direction cosines of z with respect to X,Y and Z

24 Finally, for the 2D case and from Fig. 1.7, the transformation matrix is written as

T =
[
a1
1 a2

1

a1
2 a2

2

]
=

[
cosα cosβ
cos γ cosα

]
(1.37)

but since γ = π
2 + α, and β = π

2 − α, then cos γ = − sinα and cosβ = sinα, thus the transformation
matrix becomes

T =
[

cosα sinα
− sinα cosα

]
(1.38)
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X

X

γ

XX

1

1

2
2

α

α

β

Figure 1.7: Rotation of Orthonormal Coordinate System

1.2 Tensors

25 We now seek to generalize the concept of a vector by introducing the tensor (T), which essentially
exists to operate on vectors v to produce other vectors (or on tensors to produce other tensors!). We
designate this operation by T·v or simply Tv.

26 We hereby adopt the dyadic notation for tensors as linear vector operators

u = T·v or ui = Tijvj (1.39-a)
u = v·S where S = TT (1.39-b)

27 † In general the vectors may be represented by either covariant or contravariant components vj or vj .
Thus we can have different types of linear transformations

ui = Tijv
j ; ui = T ijvj

ui = T .ji vj ; ui = T i.jv
j (1.40)

involving the covariant components Tij , the contravariant components T ij and the mixed com-
ponents T i.j or T .ji .

28 Whereas a tensor is essentially an operator on vectors (or other tensors), it is also a physical quantity,
independent of any particular coordinate system yet specified most conveniently by referring to an
appropriate system of coordinates.

29 Tensors frequently arise as physical entities whose components are the coefficients of a linear relation-
ship between vectors.

30 A tensor is classified by the rank or order. A Tensor of order zero is specified in any coordinate system
by one coordinate and is a scalar. A tensor of order one has three coordinate components in space, hence
it is a vector. In general 3-D space the number of components of a tensor is 3n where n is the order of
the tensor.

31 A force and a stress are tensors of order 1 and 2 respectively.

1.2.1 Indicial Notation

32 Whereas the Engineering notation may be the simplest and most intuitive one, it often leads to long
and repetitive equations. Alternatively, the tensor and the dyadic form will lead to shorter and more
compact forms.
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33 While working on general relativity, Einstein got tired of writing the summation symbol with its range
of summation below and above (such as

∑n=3
i=1 aijbi) and noted that most of the time the upper range

(n) was equal to the dimension of space (3 for us, 4 for him), and that when the summation involved a
product of two terms, the summation was over a repeated index (i in our example). Hence, he decided
that there is no need to include the summation sign

∑
if there was repeated indices (i), and thus any

repeated index is a dummy index and is summed over the range 1 to 3. An index that is not repeated
is called free index and assumed to take a value from 1 to 3.

34 Hence, this so called indicial notation is also referred to Einstein’s notation.

35 The following rules define indicial notation:

1. If there is one letter index, that index goes from i to n (range of the tensor). For instance:

ai = ai = � a1 a2 a3 � =


a1

a2

a3

 i = 1, 3 (1.41)

assuming that n = 3.

2. A repeated index will take on all the values of its range, and the resulting tensors summed. For
instance:

a1ixi = a11x1 + a12x2 + a13x3 (1.42)

3. Tensor’s order:

• First order tensor (such as force) has only one free index:

ai = ai = � a1 a2 a3 � (1.43)

other first order tensors aijbj, Fikk, εijkujvk
• Second order tensor (such as stress or strain) will have two free indeces.

Dij =

 D11 D22 D13

D21 D22 D23

D31 D32 D33

 (1.44)

other examples Aijip, δijukvk.

• A fourth order tensor (such as Elastic constants) will have four free indeces.

4. Derivatives of tensor with respect to xi is written as , i. For example:

∂Φ
∂xi

= Φ,i
∂vi

∂xi
= vi,i

∂vi

∂xj
= vi,j

∂Ti,j

∂xk
= Ti,j,k (1.45)

36 Usefulness of the indicial notation is in presenting systems of equations in compact form. For instance:

xi = cijzj (1.46)

this simple compacted equation, when expanded would yield:

x1 = c11z1 + c12z2 + c13z3

x2 = c21z1 + c22z2 + c23z3 (1.47-a)
x3 = c31z1 + c32z2 + c33z3

Similarly:
Aij = BipCjqDpq (1.48)
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A11 = B11C11D11 +B11C12D12 +B12C11D21 +B12C12D22

A12 = B11C11D11 +B11C12D12 +B12C11D21 +B12C12D22

A21 = B21C11D11 +B21C12D12 +B22C11D21 +B22C12D22

A22 = B21C21D11 +B21C22D12 +B22C21D21 +B22C22D22 (1.49-a)

37 Using indicial notation, we may rewrite the definition of the dot product

a·b = aibi (1.50)

and of the cross product

a×b = εpqraqbrep (1.51)

we note that in the second equation, there is one free index p thus there are three equations, there are
two repeated (dummy) indices q and r, thus each equation has nine terms.

1.2.2 Tensor Operations

1.2.2.1 Sum

38 The sum of two (second order) tensors is simply defined as:

Sij = Tij +Uij (1.52)

1.2.2.2 Multiplication by a Scalar

39 The multiplication of a (second order) tensor by a scalar is defined by:

Sij = λTij (1.53)

1.2.2.3 Contraction

40 In a contraction, we make two of the indeces equal (or in a mixed tensor, we make a ubscript equal to
the superscript), thus producing a tensor of order two less than that to which it is applied. For example:

Tij → Tii; 2 → 0
uivj → uivi; 2 → 0
Amr
..sn → Amr

..sm = Br
.s; 4 → 2

Eijak → Eijai = cj ; 3 → 1
Ampr
qs → Ampr

qr = Bmp
q ; 5 → 3

(1.54)

Victor Saouma Introduction to Continuum Mechanics



Draft1.2 Tensors 1–11

1.2.2.4 Products

1.2.2.4.1 Outer Product

41 The outer product of two tensors (not necessarily of the same type or order) is a set of tensor
components obtained simply by writing the components of the two tensors beside each other with no
repeated indices (that is by multiplying each component of one of the tensors by every component of
the other). For example

aibj = Tij (1.55-a)
AiB.k

j = Ci.k.j (1.55-b)
viTjk = Sijk (1.55-c)

1.2.2.4.2 Inner Product

42 The inner product is obtained from an outer product by contraction involving one index from each
tensor. For example

aibj → aibi (1.56-a)
aiEjk → aiEik = fk (1.56-b)

EijFkm → EijFjm = Gim (1.56-c)
AiB.k

i → AiB.k
i = Dk (1.56-d)

1.2.2.4.3 Scalar Product

43 The scalar product of two tensors is defined as

T : U = TijUij (1.57)

in any rectangular system.

44 The following inner-product axioms are satisfied:

T : U = U : T (1.58-a)
T : (U+V) = T : U+T : V (1.58-b)

α(T : U) = (αT) : U = T : (αU) (1.58-c)
T : T > 0 unless T = 0 (1.58-d)

1.2.2.4.4 Tensor Product

45 Since a tensor primary objective is to operate on vectors, the tensor product of two vectors provides
a fundamental building block of second-order tensors and will be examined next.
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46 The Tensor Product of two vectors u and v is a second order tensor u⊗ v which in turn operates
on an arbitrary vector w as follows:

[u⊗ v]w ≡ (v·w)u (1.59)

In other words when the tensor product u ⊗ v operates on w (left hand side), the result (right hand
side) is a vector that points along the direction of u, and has length equal to (v·w)||u||, or the original
length of u times the dot (scalar) product of v and w.

47 Of particular interest is the tensor product of the base vectors ei ⊗ ej . With three base vectors, we
have a set of nine second order tensors which provide a suitable basis for expressing the components of a
tensor. Again, we started with base vectors which themselves provide a basis for expressing any vector,
and now the tensor product of base vectors in turn provides a formalism to express the components of
a tensor.

48 The second order tensor T can be expressed in terms of its components Tij relative to the base
tensors ei ⊗ ej as follows:

T =
3∑
i=1

3∑
j=1

Tij [ei ⊗ ej] (1.60-a)

Tek =
3∑
i=1

3∑
j=1

Tij [ei ⊗ ej ] ek (1.60-b)

[ei ⊗ ej ] ek = (ej·ek)ei = δjkei (1.60-c)

Tek =
3∑
i=1

Tikei (1.60-d)

Thus Tik is the ith component of Tek. We can thus define the tensor component as follows

Tij = ei·Tej (1.61)

49 Now we can see how the second order tensor T operates on any vector v by examining the components
of the resulting vector Tv:

Tv =

 3∑
i=1

3∑
j=1

Tij [ei ⊗ ej ]

(
3∑

k=1

vkek

)
=

3∑
i=1

3∑
j=1

3∑
k=1

Tijvk[ei ⊗ ej ]ek (1.62)

which when combined with Eq. 1.60-c yields

Tv =
3∑
i=1

3∑
j=1

Tijvjei (1.63)

which is clearly a vector. The ith component of the vector Tv being

(Tv)i =
3∑
i=1

Tijvj (1.64)

50 The identity tensor I leaves the vector unchanged Iv = v and is equal to

I ≡ ei ⊗ ei (1.65)
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51 A simple example of a tensor and its operation on vectors is the projection tensor P which generates
the projection of a vector v on the plane characterized by a normal n:

P ≡ I− n⊗ n (1.66)

the action of P on v gives Pv = v− (v·n)n. To convince ourselves that the vector Pv lies on the plane,
its dot product with n must be zero, accordingly Pv·n = v·n− (v·n)(n·n) = 0

√
.

1.2.2.5 Product of Two Second-Order Tensors

52 The product of two tensors is defined as

P = T·U; Pij = TikUkj (1.67)

in any rectangular system.

53 The following axioms hold

(T·U)·R = T·(U·R) (1.68-a)
T·(R+U) = T·R+ t·U (1.68-b)
(R+U)·T = R·T+U·T (1.68-c)

α(T·U) = (αT)·U = T·(αU) (1.68-d)
1T = T·1 = T (1.68-e)

Note again that some authors omit the dot.
Finally, the operation is not commutative

1.2.3 Dyads

54 The indeterminate vector product of a and b defined by writing the two vectors in juxtaposition as
ab is called a dyad. A dyadic D corresponds to a tensor of order two and is a linear combination of
dyads:

D = a1b1 + a2b2 · · ·anbn (1.69)

The conjugate dyadic of D is written as

Dc = b1a1 + b2a2 · · ·bnan (1.70)

1.2.4 Rotation of Axes

55 The rule for changing second order tensor components under rotation of axes goes as follow:

ui = ajiuj From Eq. 1.33
= ajiTjqvq From Eq. 1.39-a
= ajiTjqa

q
pvp From Eq. 1.33

(1.71)

But we also have ui = T ipvp (again from Eq. 1.39-a) in the barred system, equating these two expressions
we obtain

T ip − (ajia
q
pTjq)vp = 0 (1.72)

hence

T ip = ajia
q
pTjq in Matrix Form [T ] = [A]T [T ][A] (1.73)

Tjq = ajia
q
pT ip in Matrix Form [T ] = [A][T ][A]T (1.74)
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By extension, higher order tensors can be similarly transformed from one coordinate system to another.

56 If we consider the 2D case, From Eq. 1.38

A =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (1.75-a)

T =

 Txx Txy 0
Txy Tyy 0
0 0 0

 (1.75-b)

T = ATTA =

 T xx T xy 0
T xy T yy 0
0 0 0

 (1.75-c)

=

 cos2 αTxx + sin2 αTyy + sin 2αTxy 1
2 (− sin 2αTxx + sin 2αTyy + 2 cos 2αTxy 0

1
2 (− sin 2αTxx + sin 2αTyy + 2 cos 2αTxy sin2 αTxx + cosα(cosαTyy − 2 sinαTxy 0

0 0 0


(1.75-d)

alternatively, using sin 2α = 2 sinα cosα and cos 2α = cos2 α−sin2 α, this last equation can be rewritten
as 

T xx
T yy
T xy

 =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ cos θ sin θ cos2 θ − sin2 θ


Txx
Tyy
Txy

 (1.76)

1.2.5 Trace

57 The trace of a second-order tensor, denoted tr T is a scalar invariant function of the tensor and is
defined as

tr T ≡ Tii (1.77)

Thus it is equal to the sum of the diagonal elements in a matrix.

1.2.6 Inverse Tensor

58 An inverse tensor is simply defined as follows

T−1(Tv) = v and T(T−1v) = v (1.78)

alternatively T−1T = TT−1 = I, or T−1
ik Tkj = δij and TikT

−1
kj = δij

1.2.7 Principal Values and Directions of Symmetric Second Order Tensors

59 Since the two fundamental tensors in continuum mechanics are of the second order and symmetric
(stress and strain), we examine some important properties of these tensors.

60 For every symmetric tensor Tij defined at some point in space, there is associated with each direction
(specified by unit normal nj) at that point, a vector given by the inner product

vi = Tijnj (1.79)
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If the direction is one for which vi is parallel to ni, the inner product may be expressed as

Tijnj = λni (1.80)

and the direction ni is called principal direction of Tij . Since ni = δijnj , this can be rewritten as

(Tij − λδij)nj = 0 (1.81)

which represents a system of three equations for the four unknowns ni and λ.

(T11 − λ)n1 + T12n2 + T13n3 = 0
T21n1 + (T22 − λ)n2 + T23n3 = 0 (1.82-a)
T31n1 + T32n2 + (T33 − λ)n3 = 0

To have a non-trivial slution (ni = 0) the determinant of the coefficients must be zero,

|Tij − λδij | = 0 (1.83)

61 Expansion of this determinant leads to the following characteristic equation

λ3 − ITλ
2 + IITλ− IIIT = 0 (1.84)

the roots are called the principal values of Tij and

IT = Tij = tr Tij (1.85)

IIT =
1
2
(TiiTjj − TijTij) (1.86)

IIIT = |Tij | = detTij (1.87)

are called the first, second and third invariants respectively of Tij .

62 It is customary to order those roots as λ1 > λ2 > λ3

63 For a symmetric tensor with real components, the principal values are also real. If those values are
distinct, the three principal directions are mutually orthogonal.

1.2.8 Powers of Second Order Tensors; Hamilton-Cayley Equations

64 When expressed in term of the principal axes, the tensor array can be written in matrix form as

T =

 λ(1) 0 0
0 λ(2) 0
0 0 λ(3)

 (1.88)

65 By direct matrix multiplication, the quare of the tensor Tij is given by the inner product TikTkj , the
cube as TikTkmTmn. Therefore the nth power of Tij can be written as

T n =

 λn(1) 0 0
0 λn(2) 0
0 0 λn(3)

 (1.89)
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Since each of the principal values satisfies Eq. 1.84 and because the diagonal matrix form of T given
above, then the tensor itself will satisfy Eq. 1.84.

T 3 − ITT 2 + IIT T − IIIT I = 0 (1.90)

where I is the identity matrix. This equation is called the Hamilton-Cayley equation.
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Chapter 2

KINETICS

Or How Forces are Transmitted

2.1 Force, Traction and Stress Vectors

1 There are two kinds of forces in continuum mechanics

body forces: act on the elements of volume or mass inside the body, e.g. gravity,
electromagnetic fields. dF = ρbdV ol.

surface forces: are contact forces acting on the free body at its bounding surface. Those
will be defined in terms of force per unit area.

2 The surface force per unit area acting on an element dS is called traction or more
accurately stress vector.∫

S
tdS = i

∫
S
txdS + j

∫
S
tydS + k

∫
S
tzdS (2.1)

Most authors limit the term traction to an actual bounding surface of a body, and use
the term stress vector for an imaginary interior surface (even though the state of stress
is a tensor and not a vector).

3 The traction vectors on planes perpendicular to the coordinate axes are particularly
useful. When the vectors acting at a point on three such mutually perpendicular planes
is given, the stress vector at that point on any other arbitrarily inclined plane can be
expressed in terms of the first set of tractions.

4 A stress, Fig 2.1 is a second order cartesian tensor, σij where the 1st subscript (i)
refers to the direction of outward facing normal, and the second one (j) to the direction
of component force.

σ = σij =

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =


t1
t2
t3

 (2.2)

5 In fact the nine rectangular components σij of σ turn out to be the three sets of
three vector components (σ11, σ12, σ13), (σ21, σ22, σ23), (σ31, σ32, σ33) which correspond to
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Figure 2.1: Stress Components on an Infinitesimal Element

the three tractions t1, t2 and t3 which are acting on the x1, x2 and x3 faces (It should
be noted that those tractions are not necesarily normal to the faces, and they can be
decomposed into a normal and shear traction if need be). In other words, stresses are
nothing else than the components of tractions (stress vector), Fig. 2.2.
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Figure 2.2: Stresses as Tensor Components

6 The state of stress at a point cannot be specified entirely by a single vector with three
components; it requires the second-order tensor with all nine components.
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2.2 Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

7 Let us now consider the problem of determining the traction acting on the surface of an
oblique plane (characterized by its normal n) in terms of the known tractions normal to
the three principal axis, t1, t2 and t3. This will be done through the so-called Cauchy’s
tetrahedron shown in Fig. 2.3.
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-t
*

3
∆ S 3

t ∆

Figure 2.3: Cauchy’s Tetrahedron

8 The components of the unit vector n are the direction cosines of its direction:

n1 = cos( � AON); n2 = cos(� BON); n3 = cos(� CON); (2.3)

The altitude ON , of length h is a leg of the three right triangles ANO, BNO and CNO
with hypothenuses OA,OB and OC. Hence

h = OAn1 = OBn2 = OCn3 (2.4)

9 The volume of the tetrahedron is one third the base times the altitude

∆V =
1

3
h∆S =

1

3
OA∆S1 =

1

3
OB∆S2 =

1

3
OC∆S3 (2.5)

which when combined with the preceding equation yields

∆S1 = ∆Sn1; ∆S2 = ∆Sn2; ∆S3 = ∆Sn3; (2.6)

or ∆Si = ∆Sni.

10 In Fig. 2.3 are also shown the average values of the body force and of the surface
tractions (thus the asterix). The negative sign appears because t∗i denotes the average

Victor Saouma Introduction to Continuum Mechanics



Draft2–4 KINETICS

traction on a surface whose outward normal points in the negative xi direction. We seek
to determine t∗n.

11 We invoke the momentum principle of a collection of particles (more about it
later on) which is postulated to apply to our idealized continuous medium. This principle
states that the vector sum of all external forces acting on the free body is equal to the

rate of change of the total momentum1. The total momentum is
∫
∆m

vdm. By the

mean-value theorem of the integral calculus, this is equal to v∗∆m where v∗ is average
value of the velocity. Since we are considering the momentum of a given collection of
particles, ∆m does not change with time and ∆mdv∗

dt
= ρ∗∆V dv∗

dt
where ρ∗ is the average

density. Hence, the momentum principle yields

t∗n∆S + ρ∗b∗∆V − t∗1∆S1 − t∗2∆S2 − t∗3∆S3 = ρ∗∆V
dv∗

dt
(2.7)

Substituting for ∆V , ∆Si from above, dividing throughout by ∆S and rearanging we
obtain

t∗n +
1

3
hρ∗b∗ = t∗1n1 + t∗2n2 + t∗3n3 +

1

3
hρ∗

dv

dt
(2.8)

and now we let h→ 0 and obtain

tn = t1n1 + t2n2 + t3n3 = tini (2.9)

We observe that we dropped the asterix as the length of the vectors approached zero.

12 It is important to note that this result was obtained without any assumption of equi-
librium and that it applies as well in fluid dynamics as in solid mechanics.

13 This equation is a vector equation, and the corresponding algebraic equations for the
components of tn are

tn1 = σ11n1 + σ21n2 + σ31n3
tn2 = σ12n1 + σ22n2 + σ32n3
tn3 = σ13n1 + σ23n2 + σ33n3

Indicial notation tni = σjinj
dyadic notation tn = n·σ = σT ·n

(2.10)

14 We have thus established that the nine components σij are components of the second
order tensor, Cauchy’s stress tensor.

15 Note that this stress tensor is really defined in the deformed space (Eulerian), and this
issue will be revisited in Sect. 4.3.

Example 2-1: Stress Vectors
1This is really Newton’s second law F = ma = m dv

dt
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if the stress tensor at point P is given by

σ =

 7 −5 0
−5 3 1
0 1 2

 =


t1
t2
t3

 (2.11)

We seek to determine the traction (or stress vector) t passing through P and parallel to
the plane ABC where A(4, 0, 0), B(0, 2, 0) and C(0, 0, 6). Solution:
The vector normal to the plane can be found by taking the cross products of vectors AB
and AC:

N = AB×AC =

∣∣∣∣∣∣∣
e1 e2 e3
−4 2 0
−4 0 6

∣∣∣∣∣∣∣ (2.12-a)

= 12e1 + 24e2 + 8e3 (2.12-b)

The unit normal of N is given by

n =
3

7
e1 +

6

7
e2 +

2

7
e3 (2.13)

Hence the stress vector (traction) will be

� 3
7

6
7

2
7 �

 7 −5 0
−5 3 1
0 1 2

 = � −97
5
7

10
7 � (2.14)

and thus t = −9
7
e1 +

5
7
e2 +

10
7
e3

2.3 Symmetry of Stress Tensor

16 From Fig. 2.1 the resultant force exerted on the positive X1 face is

� σ11∆X2∆X3 σ12∆X2∆X3 σ13∆X2∆X3 � (2.15)

similarly the resultant forces acting on the positive X2 face are

� σ21∆X3∆X1 σ22∆X3∆X1 σ23∆X3∆X1 � (2.16)

17 We now consider moment equilibrium (M = F×d). The stress is homogeneous,
and the normal force on the opposite side is equal opposite and colinear. The moment
(∆X2/2)σ31∆X1∆X2 is likewise balanced by the moment of an equal component in the
opposite face. Finally similar argument holds for σ32.

18 The net moment about the X3 axis is thus

M = ∆X1(σ12∆X2∆X3)−∆X2(σ21∆X3∆X1) (2.17)

which must be zero, hence σ12 = σ21.
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19 We generalize and conclude that in the absence of distributed body forces, the stress
matrix is symmetric,

σij = σji (2.18)

20 A more rigorous proof of the symmetry of the stress tensor will be given in Sect.
6.3.2.1.

2.3.1 Cauchy’s Reciprocal Theorem

21 If we consider t1 as the traction vector on a plane with normal n1, and t2 the stress
vector at the same point on a plane with normal n2, then

t1 = n1·σ and t2 = n2σ (2.19)

or in matrix form as
{t1} = �n1�[σ] and {t2} = �n2�[σ] (2.20)

If we postmultiply the first equation by n2 and the second one by n1, by virtue of the
symmetry of [σ] we have

[n1σ]n2 = [n2σ]n1 (2.21)

or

t1·n2 = t2·n1 (2.22)

22 In the special case of two opposite faces, this reduces to
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Figure 2.4: Cauchy’s Reciprocal Theorem

tn = −t−n (2.23)
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23 We should note that this theorem is analogous to Newton’s famous third law of motion
To every action there is an equal and opposite reaction.

2.4 Principal Stresses

24 Regardless of the state of stress (as long as the stress tensor is symmetric), at a given
point, it is always possible to choose a special set of axis through the point so that the
shear stress components vanish when the stress components are referred to this system
of axis. these special axes are called principal axes of the principal stresses.

25 To determine the principal directions at any point, we consider n to be a unit vector in
one of the unknown directions. It has components ni. Let λ represent the principal-stress
component on the plane whose normal is n (note both n and λ are yet unknown). Since
we know that there is no shear stress component on the plane perpendicular to n,

11

σ12

tn

tn1

n2ttnnσ=

σ

σ  =0

t
n1

t n2

n
n

n1

n2

σ11

σ12
t n

=

=

n

Arbitrary Plane

Initial (X1) Plane

Principal Plane

t
n2

t
n1

σn

σs s

Figure 2.5: Principal Stresses

the stress vector on this plane must be parallel to n and

tn = λn (2.24)

26 From Eq. 2.10 and denoting the stress tensor by σ we get

n·σ = λn (2.25)

in indicial notation this can be rewritten as

nrσrs = λns (2.26)

or
(σrs − λδrs)nr = 0 (2.27)

in matrix notation this corresponds to

n ([σ]− λ[I]) = 0 (2.28)
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where I corresponds to the identity matrix. We really have here a set of three homoge-
neous algebraic equations for the direction cosines ni.

27 Since the direction cosines must also satisfy

n21 + n22 + n23 = 1 (2.29)

they can not all be zero. hence Eq.2.28 has solutions which are not zero if and only if
the determinant of the coefficients is equal to zero, i.e∣∣∣∣∣∣∣

σ11 − λ σ12 σ13
σ21 σ22 − λ σ23
σ31 σ32 σ33 − λ

∣∣∣∣∣∣∣ = 0 (2.30)

|σrs − λδrs| = 0 (2.31)

|σ − λI| = 0 (2.32)

28 For a given set of the nine stress components, the preceding equation constitutes a
cubic equation for the three unknown magnitudes of λ.

29 Cauchy was first to show that since the matrix is symmetric and has real elements,
the roots are all real numbers.

30 The three lambdas correspond to the three principal stresses σ(1) > σ(2) > σ(3). When
any one of them is substituted for λ in the three equations in Eq. 2.28 those equations
reduce to only two independent linear equations, which must be solved together with the
quadratic Eq. 2.29 to determine the direction cosines nir of the normal ni to the plane
on which σi acts.

31 The three directions form a right-handed system and

n3 = n1×n2 (2.33)

32 In 2D, it can be shown that the principal stresses are given by:

σ1,2 =
σx + σy

2
±

√(
σx − σy

2

)2
+ τ 2xy (2.34)

2.4.1 Invariants

33 The principal stresses are physical quantities, whose values do not depend on the
coordinate system in which the components of the stress were initially given. They are
therefore invariants of the stress state.

34 When the determinant in the characteristic Eq. 2.32 is expanded, the cubic equation
takes the form

λ3 − Iσλ
2 − IIσλ− IIIσ = 0 (2.35)

where the symbols Iσ, IIσ and IIIσ denote the following scalar expressions in the stress
components:

Victor Saouma Introduction to Continuum Mechanics
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Iσ = σ11 + σ22 + σ33 = σii = tr σ (2.36)

IIσ = −(σ11σ22 + σ22σ33 + σ33σ11) + σ223 + σ231 + σ212 (2.37)

=
1

2
(σijσij − σiiσjj) =

1

2
σijσij −

1

2
I2σ (2.38)

=
1

2
(σ : σ − I2σ) (2.39)

IIIσ = detσ =
1

6
eijkepqrσipσjqσkr (2.40)

35 In terms of the principal stresses, those invariants can be simplified into

Iσ = σ(1) + σ(2) + σ(3) (2.41)

IIσ = −(σ(1)σ(2) + σ(2)σ(3) + σ(3)σ(1)) (2.42)

IIIσ = σ(1)σ(2)σ(3) (2.43)

2.4.2 Spherical and Deviatoric Stress Tensors

36 If we let σ denote the mean normal stress p

σ = −p =
1

3
(σ11 + σ22 + σ33) =

1

3
σii =

1

3
tr σ (2.44)

then the stress tensor can be written as the sum of two tensors:

Hydrostatic stress in which each normal stress is equal to −p and the shear stresses
are zero. The hydrostatic stress produces volume change without change in shape
in an isotropic medium.

σhyd = −pI =

 −p 0 0
0 −p 0
0 0 −p

 (2.45)

Deviatoric Stress: which causes the change in shape.

σdev =

 σ11 − σ σ12 σ13
σ21 σ22 − σ σ23
σ31 σ32 σ33 − σ

 (2.46)

2.5 Stress Transformation

37 From Eq. 1.73 and 1.74, the stress transformation for the second order stress tensor
is given by

σip = ajia
q
pσjq in Matrix Form [σ] = [A]T [σ][A] (2.47)

σjq = ajia
q
pσip in Matrix Form [σ] = [A][σ][A]T (2.48)
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38 For the 2D plane stress case we rewrite Eq. 1.76
σxx
σyy
σxy

 =

 cos2 α sin2 α 2 sinα cosα
sin2 α cos2 α −2 sinα cosα

− sinα cosα cosα sinα cos2 α− sin2 α




σxx
σyy
σxy

 (2.49)

Example 2-2: Principal Stresses

The stress tensor is given at a point by

σ =

 3 1 1
1 0 2
1 2 0

 (2.50)

determine the principal stress values and the corresponding directions.
Solution:
From Eq.2.32 we have ∣∣∣∣∣∣∣

3− λ 1 1
1 0− λ 2
1 2 0− λ

∣∣∣∣∣∣∣ = 0 (2.51)

Or upon expansion (and simplification) (λ + 2)(λ − 4)(λ − 1) = 0, thus the roots are
σ(1) = 4, σ(2) = 1 and σ(3) = −2. We also note that those are the three eigenvalues of
the stress tensor.

If we let x1 axis be the one corresponding to the direction of σ(3) and n3i be the
direction cosines of this axis, then from Eq. 2.28 we have

(3 + 2)n31 + n32 + n33 = 0
n31 + 2n32 + 2n33 = 0
n31 + 2n32 + 2n33 = 0

⇒ n31 = 0; n32 =
1√
2
; n33 = − 1√

2
(2.52)

Similarly If we let x2 axis be the one corresponding to the direction of σ(2) and n2i be the
direction cosines of this axis,

2n21 + n22 + n23 = 0
n21 − n22 + 2n23 = 0
n21 + 2n22 − n23 = 0

⇒ n21 =
1√
3
; n22 = − 1√

3
; n23 = − 1√

3
(2.53)

Finally, if we let x3 axis be the one corresponding to the direction of σ(1) and n1i be the
direction cosines of this axis,

−n11 + n12 + n13 = 0
n11 − 4n12 + 2n13 = 0
n11 + 2n12 − 4n13 = 0

⇒ n11 = − 2√
6
; n12 = − 1√

6
; n13 = − 1√

6
(2.54)

Finally, we can convince ourselves that the two stress tensors have the same invariants
Iσ, IIσ and IIIσ.

Example 2-3: Stress Transformation

Victor Saouma Introduction to Continuum Mechanics
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Show that the transformation tensor of direction cosines previously determined trans-
forms the original stress tensor into the diagonal principal axes stress tensor.
Solution:

From Eq. 2.47

σ =


0 1√

2
− 1√

2
1√
3

− 1√
3

− 1√
3

− 2√
6

− 1√
6

− 1√
6


 3 1 1
1 0 2
1 2 2




0 1√
3

− 2√
6

1√
2

− 1√
3

− 1√
6

− 1√
2

− 1√
3

− 1√
6

 (2.55-a)

=

 −2 0 0
0 1 0
0 0 4

 (2.55-b)

2.5.1 Plane Stress

39 Plane stress conditions prevail when σ3i = 0, and thus we have a biaxial stress field.

40 Plane stress condition prevail in (relatively) thin plates, i.e when one of the dimensions
is much smaller than the other two.

2.5.2 Mohr’s Circle for Plane Stress Conditions

41 The Mohr circle will provide a graphical mean to contain the transformed state of
stress (σxx, σyy, σxy) at an arbitrary plane (inclined by α) in terms of the original one
(σxx, σyy, σxy).

42 Substituting

cos2 α = 1+cos 2α
2

sin2 α = 1−cos 2α
2

cos 2α = cos2 α− sin2 α sin 2α = 2 sinα cosα
(2.56)

into Eq. 2.49 and after some algebraic manipulation we obtain

σxx =
1

2
(σxx + σyy) +

1

2
(σxx − σyy) cos 2α+ σxy sin 2α (2.57-a)

σxy = σxy cos 2α−
1

2
(σxx − σyy) sin 2α (2.57-b)

43 Points (σxx, σxy), (σxx, 0), (σyy, 0) and [(σxx + σyy)/2, 0] are plotted in the stress repre-
sentation of Fig. 2.6. Then we observe that

1

2
(σxx − σyy) = R cos 2β (2.58-a)

σxy = R sin 2β (2.58-b)
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Figure 2.6: Mohr Circle for Plane Stress
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where

R =

√
1

4
(σxx − σyy)2 + σ2xy (2.59-a)

tan 2β =
2σxy

σxx − σyy
(2.59-b)

then after substitution and simplifiation, Eq. 2.57-a and 2.57-b would result in

σxx =
1

2
(σxx + σyy) +R cos(2β − 2α) (2.60)

σxy = R sin(2β − 2α) (2.61)

We observe that the form of these equations, indicates that σxx and σxy are on a circle
centered at 1

2
(σxx + σyy) and of radius R. Furthermore, since σxx, σyy, R and β are

definite numbers for a given state of stress, the previous equations provide a graphical
solution for the evaluation of the rotated stress σxx and σxy for various angles α.

44 By eliminating the trigonometric terms, the Cartesian equation of the circle is given
by

[σxx −
1

2
(σxx + σyy)]

2 + σ2xy = R2 (2.62)

45 Finally, the graphical solution for the state of stresses at an inclined plane is summa-
rized as follows

1. Plot the points (σxx, 0), (σyy , 0), C : [1
2
(σxx + σyy), 0], and X : (σxx, σxy).

2. Draw the line CX, this will be the reference line corresponding to a plane in the
physical body whose normal is the positive x direction.

3. Draw a circle with center C and radius R = CX.

4. To determine the point that represents any plane in the physical body with normal
making a counterclockwise angle α with the x direction, lay off angle 2α clockwise
from CX. The terminal side CX of this angle intersects the circle in point X whose
coordinates are (σxx, σxy).

5. To determine σyy, consider the plane whose normal makes an angle α+ 1
2
π with the

positive x axis in the physical plane. The corresponding angle on the circle is 2α+π
measured clockwise from the reference line CX. This locates point D which is at
the opposite end of the diameter through X. The coordinates of D are (σyy,−σxy)

Example 2-4: Mohr’s Circle in Plane Stress

An element in plane stress is subjected to stresses σxx = 15, σyy = 5 and τxy = 4.
Using the Mohr’s circle determine: a) the stresses acting on an element rotated through
an angle θ = +40o (counterclockwise); b) the principal stresses; and c) the maximum
shear stresses. Show all results on sketches of properly oriented elements.
Solution:
With reference to Fig. 2.7:
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Figure 2.7: Plane Stress Mohr’s Circle; Numerical Example

1. The center of the circle is located at

1

2
(σxx + σyy) =

1

2
(15 + 5) = 10. (2.63)

2. The radius and the angle 2β are given by

R =

√
1

4
(15− 5)2 + 42 = 6.403 (2.64-a)

tan 2β =
2(4)

15− 5
= 0.8 ⇒ 2β = 38.66o; β = 19.33o (2.64-b)

3. The stresses acting on a plane at θ = +40o are given by the point making an angle
of −80o (clockwise) with respect to point X(15, 4) or −80o+38.66o = −41.34o with
respect to the axis.

4. Thus, by inspection the stresses on the x face are

σxx = 10 + 6.403 cos−41.34o = 14.81 (2.65-a)

τxy = 6.403 sin−41.34o = −4.23 (2.65-b)

5. Similarly, the stresses at the face y are given by

σyy = 10 + 6.403 cos(180o − 41.34o) = 5.19 (2.66-a)

τxy = 6.403 sin(180o − 41.34o) = 4.23 (2.66-b)
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6. The principal stresses are simply given by

σ(1) = 10 + 6.4 = 16.4 (2.67-a)

σ(2) = 10− 6.4 = 3.6 (2.67-b)

σ(1) acts on a plane defined by the angle of +19.3o clockwise from the x axis, and

σ(2) acts at an angle of 38.66
o+180o

2
= 109.3o with respect to the x axis.

7. The maximum and minimum shear stresses are equal to the radius of the circle, i.e
6.4 at an angle of

90o − 38.66o

2
= 25.70 (2.68)

2.5.3 †Mohr’s Stress Representation Plane

46 There can be an infinite number of planes passing through a pointO, each characterized
by their own normal vector along ON , Fig. 2.8. To each plane will correspond a set of
σn and τn.

A

G

B

H

F

D

O

N

C

Y

Z

σ

σ

II

III

γ

α

β

J

E

Figure 2.8: Unit Sphere in Physical Body around O

47 It can be shown that all possible sets of σn and τn which can act on the point O are
within the shaded area of Fig. 2.9.

2.6 Simplified Theories; Stress Resultants

48 For many applications of continuum mechanics the problem of determining the three-
dimensional stress distribution is too difficult to solve. However, in many (civil/mechanical)applications,
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Figure 2.9: Mohr Circle for Stress in 3D

one or more dimensions is/are small compared to the others and possess certain symme-
tries of geometrical shape and load distribution.

49 In those cases, we may apply “engineering theories” for shells, plates or beams.
In those problems, instead of solving for the stress components throughout the body,
we solve for certain stress resultants (normal, shear forces, and Moments and torsions)
resulting from an integration over the body. We consider separately two of those three
cases.

50 Alternatively, if a continuum solution is desired, and engineering theories prove to
be either too restrictive or inapplicable, we can use numerical techniques (such as the
Finite Element Method) to solve the problem.

2.6.1 Arch

51 Fig. 2.10 illustrates the stresses acting on a differential element of a shell structure.
The resulting forces in turn are shown in Fig. 2.11 and for simplification those acting
per unit length of the middle surface are shown in Fig. 2.12. The net resultant forces
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Figure 2.10: Differential Shell Element, Stresses

Figure 2.11: Differential Shell Element, Forces
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Figure 2.12: Differential Shell Element, Vectors of Stress Couples

are given by:

Membrane Force

N =
∫ +h

2

−h
2

σ
(
1− z

r

)
dz



Nxx =
∫ +h

2

−h
2

σxx

(
1− z

ry

)
dz

Nyy =
∫ +h

2

−h
2

σyy

(
1− z

rx

)
dz

Nxy =
∫ +h

2

−h
2

σxy

(
1− z

ry

)
dz

Nyx =
∫ +h

2

−h
2

σxy

(
1− z

rx

)
dz

Bending Moments

M =
∫ +h

2

−h
2

σz
(
1− z

r

)
dz



Mxx =
∫ +h

2

−h
2

σxxz

(
1− z

ry

)
dz

Myy =
∫ +h

2

−h
2

σyyz
(
1− z

rx

)
dz

Mxy = −
∫ +h

2

−h
2

σxyz

(
1− z

ry

)
dz

Myx =
∫ +h

2

−h
2

σxyz
(
1− z

rx

)
dz

Transverse Shear Forces

Q =
∫ +h

2

−h
2

τ
(
1− z

r

)
dz


Qx =

∫ +h
2

−h
2

τxz

(
1− z

ry

)
dz

Qy =
∫ +h

2

−h
2

τyz

(
1− z

rx

)
dz

(2.69)
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2.6.2 Plates

52 Considering an arbitrary plate, the stresses and resulting forces are shown in Fig. 2.13,
and resultants per unit width are given by

Figure 2.13: Stresses and Resulting Forces in a Plate

Membrane Force N =
∫ t

2

− t
2

σdz



Nxx =
∫ t

2

− t
2

σxxdz

Nyy =
∫ t

2

− t
2

σyydz

Nxy =
∫ t

2

− t
2

σxydz

Bending Moments M =
∫ t

2

− t
2

σzdz



Mxx =
∫ t

2

− t
2

σxxzdz

Myy =
∫ t

2

− t
2

σyyzdz

Mxy =
∫ t

2

− t
2

σxyzdz

Transverse Shear Forces V =
∫ t

2

− t
2

τdz


Vx =

∫ t
2

− t
2

τxzdz

Vy =
∫ t

2

− t
2

τyzdz

(2.70-a)

53 Note that in plate theory, we ignore the effect of the membrane forces, those in turn
will be accounted for in shells.
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Chapter 3

MATHEMATICAL
PRELIMINARIES; Part II
VECTOR DIFFERENTIATION

3.1 Introduction

1 A field is a function defined over a continuous region. This includes, Scalar Field
g(x), Vector Field v(x), Fig. 3.1 or Tensor Field T(x).

2 We first introduce the differential vector operator “Nabla” denoted by ∇

∇ ≡ ∂

∂x
i+

∂

∂y
j+

∂

∂z
k (3.1)

3 We also note that there are as many ways to differentiate a vector field as there are
ways of multiplying vectors, the analogy being given by Table 3.1.

Multiplication Differentiation Tensor Order
u·v dot ∇·v divergence ❄
u×v cross ∇×v curl ✲
u⊗ v tensor ∇v gradient ✻

Table 3.1: Similarities Between Multiplication and Differentiation Operators

3.2 Derivative WRT to a Scalar

4 The derivative of a vector p(u) with respect to a scalar u, Fig. 3.2 is defined by

dp

du
≡ lim
∆u→0

p(u+∆u)− p(u)

∆u
(3.2)
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‡ Scalar and Vector Fields
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Figure 3.1: Examples of a Scalar and Vector Fields
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Figure 3.2: Differentiation of position vector p
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5 If p(u) is a position vector p(u) = x(u)i+ y(u)j+ z(u)k, then

dp

du
=

dx

du
i+

dy

du
j+

dz

du
k (3.3)

is a vector along the tangent to the curve.

6 If u is the time t, then dp
dt

is the velocity

7 In differential geometry, if we consider a curve C defined by the function p(u) then
dp
du

is a vector tangent ot C, and if u is the curvilinear coordinate s measured from any

point along the curve, then dp
ds

is a unit tangent vector to C T, Fig. 3.3. and we have the

C

TN

B

Figure 3.3: Curvature of a Curve

following relations

dp

ds
= T (3.4)

dT

ds
= κN (3.5)

B = T×N (3.6)

κ curvature (3.7)

ρ =
1

κ
Radius of Curvature (3.8)

we also note that p·dp
ds

= 0 if
∣∣∣dp
ds

∣∣∣ �= 0.

Example 3-1: Tangent to a Curve

Determine the unit vector tangent to the curve: x = t2 + 1, y = 4t − 3, z = 2t2 − 6t
for t = 2.
Solution:
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dp

dt
=

d

dt

[
(t2 + 1)i+ (4t− 3)j+ (2t2 − 6t)k

]
= 2ti+ 4j+ (4t− 6)k (3.9-a)∣∣∣∣∣dpdt

∣∣∣∣∣ =
√
(2t)2 + (4)2 + (4t− 6)2 (3.9-b)

T =
2ti + 4j+ (4t− 6)k√
(2t)2 + (4)2 + (4t− 6)2

(3.9-c)

=
4i+ 4j+ 2k√

(4)2 + (4)2 + (2)2
=

2

3
i+

2

3
j+

1

3
k for t = 2 (3.9-d)

Mathematica solution is shown in Fig. 3.4

‡ Parametric Plot in 3D

ParametricPlot3D@8t^2 + 1, 4 t − 3, 2 t^2 − 6 t<, 8t, 0, 4<D

0

5

10

15

0

5

10

0

5

0

5

10

15

0

5

10

Ö Graphics3D Ö

m−par3d.nb 1

Figure 3.4: Mathematica Solution for the Tangent to a Curve in 3D

3.3 Divergence

3.3.1 Vector

8 The divergence of a vector field of a body B with boundary Ω, Fig. 3.5 is defined
by considering that each point of the surface has a normal n, and that the body is
surrounded by a vector field v(x). The volume of the body is v(B).
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v(x)

B

Ω

n

Figure 3.5: Vector Field Crossing a Solid Region

9 The divergence of the vector field is thus defined as

div v(x) ≡ lim
v(B)→0

1

v(B)

∫
Ω
v·ndA (3.10)

where v.n is often referred as the flux and represents the total volume of “fluid” that
passes through dA in unit time, Fig. 3.6 This volume is then equal to the base of the

v

Ω
v.n

dA
n

Figure 3.6: Flux Through Area dA

cylinder dA times the height of the cylinder v·n. We note that the streamlines which
are tangent to the boundary do not let any fluid out, while those normal to it let it out
most efficiently.

10 The divergence thus measure the rate of change of a vector field.

11 The definition is clearly independent of the shape of the solid region, however we can
gain an insight into the divergence by considering a rectangular parallelepiped with sides
∆x1, ∆x2, and ∆x3, and with normal vectors pointing in the directions of the coordinate
axies, Fig. 3.7. If we also consider the corner closest to the origin as located at x, then
the contribution (from Eq. 3.10) of the two surfaces with normal vectors e1 and −e1 is

lim
∆x1,∆x2,∆x3→0

1

∆x1∆x2∆x3

∫
∆x2∆x3

[v(x+∆x1e1)·e1 + v(x)·(−e1)]dx2dx3 (3.11)

or

lim
∆x1,∆x2,∆x3→0

1

∆x2∆x3

∫
∆x2∆x3

v(x+∆x1e1)− v(x)

∆x1
·e1dx2dx3 = lim

∆x1→0
∆v

∆x1
·e1(3.12-a)
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x∆
x∆

x∆

2

1

33e -e

e-e

e
-e

x

x

x

2

1

3

1

1

22

3

Figure 3.7: Infinitesimal Element for the Evaluation of the Divergence

=
∂v

∂x1
·e1 (3.12-b)

hence, we can generalize

div v(x) =
∂v(x)

∂xi
·ei (3.13)

12 or alternatively

div v = ∇·v = (
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3)·(v1e1 + v2e2 + v3e3) (3.14)

=
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

=
∂vi
∂xi

= ∂ivi = vi,i (3.15)

13 The divergence of a vector is a scalar.

14 We note that the Laplacian Operator is defined as

∇2F ≡ ∇∇F = F,ii (3.16)

Example 3-2: Divergence

Determine the divergence of the vector A = x2zi− 2y3z2j+ xy2zk at point (1,−1, 1).
Solution:

∇·v =

(
∂

∂x
i+

∂

∂y
j+

∂

∂z
k

)
·(x2zi− 2y3z2j+ xy2zk) (3.17-a)

=
∂x2z

∂x
+

∂ − 2y3z2

∂y
+

∂xy2z

∂z
(3.17-b)
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= 2xz − 6y2z2 + xy2 (3.17-c)

= 2(1)(1)− 6(−1)2(1)2 + (1)(−1)2 = −3 at (1,−1, 1) (3.17-d)

Mathematica solution is shown in Fig. 3.8

‡ Divergence of a Vector

<< Calculus‘VectorAnalysis‘

V = 8x^2 z, −2 y^3 z^2, x y^2 z<;

Div@V, Cartesian@x, y, zDD

-6 z2 y2 + x y2 + 2 x z

<< Graphics‘PlotField3D‘

PlotVectorField3D@8x^2 z, −2 y^3 z^2, x y^2 z<, 8x, −10, 10<, 8y, −10, 10<, 8z, −10, 10<,
Axes −> Automatic, AxesLabel −> 8"X", "Y", "Z"<D

-10
-5

0

5

10
X

-10

-5

0

5

10
Y

-10

-5

0

5

10

Z

-10
-5

0

5X

10

-5

0

5
Y

Ö Graphics3D Ö

Div@Curl@V, Cartesian@x, y, zDD, Cartesian@x, y, zDD

0

m−diver.nb 1

Figure 3.8: Mathematica Solution for the Divergence of a Vector

3.3.2 Second-Order Tensor

15 By analogy to Eq. 3.10, the divergence of a second-order tensor field T is

∇·T = div T(x) ≡ lim
v(B)→0

1

v(B)

∫
Ω
T·ndA (3.18)

which is the vector field

∇·T =
∂Tpq
∂xp

eq (3.19)
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3.4 Gradient

3.4.1 Scalar

16 The gradient of a scalar field g(x) is a vector field ∇g(x) such that for any unit vector
v, the directional derivative dg/ds in the direction of v is given by

dg

ds
= ∇g·v (3.20)

where v = dp
ds

We note that the definition made no reference to any coordinate system.
The gradient is thus a vector invariant.

17 To find the components in any rectangular Cartesian coordinate system we use

v =
dp

ds
=

dxi
ds

ei (3.21-a)

dg

ds
=

∂g

∂xi

dxi
ds

(3.21-b)

which can be substituted and will yield

∇g =
∂g

∂xi
ei (3.22)

or

∇φ ≡
(

∂

∂x
i+

∂

∂y
j+

∂

∂z
k

)
φ (3.23-a)

=
∂φ

∂x
i+

∂φ

∂y
j+

∂φ

∂z
k (3.23-b)

and note that it defines a vector field.

18 The physical significance of the gradient of a scalar field is that it points in the direction
in which the field is changing most rapidly (for a three dimensional surface, the gradient
is pointing along the normal to the plane tangent to the surface). The length of the
vector ||∇g(x)|| is perpendicular to the contour lines.

19 ∇g(x)·n gives the rate of change of the scalar field in the direction of n.

Example 3-3: Gradient of a Scalar

Determine the gradient of φ = x2yz + 4xz2 at point (1,−2,−1) along the direction
2i− j− 2k.
Solution:

∇φ = ∇(x2yz + 4xz2) = (2xyz + 4z2)i + (x2zj + (x2y + 8xz)k (3.24-a)
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= 8i− j− 10k at (1,−2,−1) (3.24-b)

n =
2i− j− 2k√

(2)2 + (−1)2 + (−2)2
=

2

3
i− 1

3
j− 2

3
k (3.24-c)

∇φ·n = (8i− j− 10k)·
(
2

3
i− 1

3
j− 2

3
k
)
=

16

3
+

1

3
+

20

3
=

37

3
(3.24-d)

Since this last value is positive, φ increases along that direction.

Example 3-4: Stress Vector normal to the Tangent of a Cylinder

The stress tensor throughout a continuum is given with respect to Cartesian axes as

σ =

 3x1x2 5x22 0
5x22 0 2x23
0 2x3 0

 (3.25)

Determine the stress vector (or traction) at the point P (2, 1,
√
3) of the plane that is

tangent to the cylindrical surface x22 + x23 = 4 at P , Fig. 3.9.

n

1

2 3

x

x

x

1

2

3

P

Figure 3.9: Radial Stress vector in a Cylinder

Solution:

At point P , the stress tensor is given by

σ =

 6 5 0
5 0 2

√
3

0 2
√
3 0

 (3.26)
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The unit normal to the surface at P is given from

∇(x22 + x23 − 4) = 2x222 + 2x3e3 (3.27)

At point P ,
∇(x22 + x23 − 4) = 222 + 2

√
3e3 (3.28)

and thus the unit normal at P is

n =
1

2
e1 +

√
3

2
e3 (3.29)

Thus the traction vector will be determined from

σ =

 6 5 0

5 0 2
√
3

0 2
√
3 0




0
1/2√
3/2

 =


5/2
3√
3

 (3.30)

or tn = 5
2
e1 + 3e2 +

√
3e3

3.4.2 Vector

20 We can also define the gradient of a vector field. If we consider a solid domain B with
boundary Ω, Fig. 3.5, then the gradient of the vector field v(x) is a second order tensor
defined by

∇xv(x) ≡ lim
v(B)→0

1

v(B)

∫
Ω
v ⊗ ndA (3.31)

and with a construction similar to the one used for the divergence, it can be shown that

∇xv(x) =
∂vi(x)

∂xj
[ei ⊗ ej ] (3.32)

where summation is implied for both i and j.

21 The components of ∇xv are simply the various partial derivatives of the component
functions with respect to the coordinates:

[∇xv] =


∂vx
∂x

∂vy
∂x

∂vz
∂x

∂vx
∂y

∂vy
∂y

∂vz
∂y

∂vx
∂z

∂vy
∂z

∂vz
∂z

 (3.33)

[v∇x] =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

 (3.34)

that is [∇v]ij gives the rate of change of the ith component of v with respect to the jth
coordinate axis.

22 Note the diference between v∇x and ∇xv. In matrix representation, one is the trans-
pose of the other.
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23 The gradient of a vector is a tensor of order 2.

24 We can interpret the gradient of a vector geometrically, Fig. 3.10. If we consider two
points a and b that are near to each other (i.e ∆s is very small), and let the unit vector
m points in the direction from a to b. The value of the vector field at a is v(x) and
the value of the vector field at b is v(x + ∆sm). Since the vector field changes with
position in the domain, those two vectors are different both in length and orientation.
If we now transport a copy of v(x) and place it at b, then we compare the differences
between those two vectors. The vector connecting the heads of v(x) and v(x+∆sm) is
v(x+∆sm)−v(x), the change in vector. Thus, if we divide this change by ∆s, then we
get the rate of change as we move in the specified direction. Finally, taking the limit as
∆s goes to zero, we obtain

lim
∆s→0

v(x+∆sm)− v(x)

∆s
≡ Dv(x)·m (3.35)

sm

∆ smv(x+ )

∆ smv(x+ )

∆

-v(x)

x

x

x

1

2

3

a b

v(x)

Figure 3.10: Gradient of a Vector

The quantity Dv(x)·m is called the directional derivative because it gives the rate
of change of the vector field as we move in the direction m.

Example 3-5: Gradient of a Vector Field

Determine the gradient of the following vector field v(x) = x1x2x3(x1e1+x2e2+x3e3).
Solution:

∇xv(x) = 2x1x2x3[e1 ⊗ e1] + x21x3[e1 ⊗ e2] + x21x2[e1 ⊗ e3]

+x22x3[e2 ⊗ e1] + 2x1x2x3[e2 ⊗ e2] + x1x
2
2[e2 ⊗ e3] (3.36-a)

+x2x
2
3[e3 ⊗ e1] + x1x

2
3[e3 ⊗ e2] + 2x1x2x3[e3 ⊗ e3]

= x1x2x3

 2 x1/x2 x1/x3
x2/x1 2 x2/x3
x3/x1 x3/x2 2

 (3.36-b)
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3.4.3 Mathematica Solution

25 Mathematica solution of the two preceding examples is shown in Fig. 3.11.

Gradient

Scalar

f = x^2 y z + 4 x z^2;

Gradf = Grad@f, Cartesian@x, y, zDD

84 z2 + 2 x y z, x2 z, y x2 + 8 z x<

<< Graphics‘PlotField3D‘

PlotGradientField3D@f, 8x, 0, 2<, 8y, -3, -1<, 8z, -2, 0<D

 Graphics3D 

x = 1; y = -2; z = -1;

vect = 82, -1, -2< Sqrt@4 + 1 + 4D

9
2

3
, -

1

3
, -

2

3
=

Gradf.vect

37

3

Gradient of a Vector

vecfield = x1 x2 x3 8x1, x2, x3<

8x12 x2 x3, x1 x22 x3, x1 x2 x32<

m−grad.nb 1
PlotVectorField3D@vecfield, 8x1, -10, 10<, 8x2, -10, 10<, 8x3, -10, 10<, Axes -> Automatic,
AxesLabel -> 8"x1", "x2", "x3"<D

-10

0

10x1

-10

0

10x2

-10

0

10

x3

-10

0

10x1

-10

0

10x2

 Graphics3D 

MatrixForm@Grad@vecfield, Cartesian@x1, x2, x3DDD

i

k

jjjjjjjjjjj

2 x1 x2 x3 x12 x3 x12 x2

x22 x3 2 x1 x2 x3 x1 x22

x2 x32 x1 x32 2 x1 x2 x3

y

{

zzzzzzzzzzz

m−grad.nb 2

Figure 3.11: Mathematica Solution for the Gradients of a Scalar and of a Vector

3.5 Curl

26 When the vector operator ∇ operates in a manner analogous to vector multiplication,
the result is a vector, curl v called the curl of the vector field v (sometimes called the
rotation).

Victor Saouma Introduction to Continuum Mechanics



Draft3.6 Some useful Relations 3–13

curl v = ∇×v =

∣∣∣∣∣∣∣
e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

v1 v2 v3

∣∣∣∣∣∣∣ (3.37)

=

(
∂v3
∂x2

− ∂v2
∂x3

)
e1 +

(
∂v1
∂x3

− ∂v3
∂x1

)
e2 +

(
∂v2
∂x1

− ∂v1
∂x2

)
e3 (3.38)

= eijk∂jvk (3.39)

Example 3-6: Curl of a vector

Determine the curl of the following vector A = xz3i− 2x2yzj+ 2yz4k at (1,−1, 1).
Solution:

∇×A =

(
∂

∂x
i+

∂

∂y
j+

∂

∂z
k

)
×(xz3i− 2x2yzj+ 2yz4k) (3.40-a)

=

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

xz3 −2x2yz 2yz4

∣∣∣∣∣∣∣ (3.40-b)

=

(
∂2yz4

∂y
− ∂ − 2x2yz

∂z

)
i+

(
∂xz3

∂z
− ∂2yz4

∂x

)
j+

(
∂ − 2x2yz

∂x
− ∂xz3

∂y

)
k(3.40-c)

= (2z4 + 2x2y)i+ 3xz2j− 4xyzk (3.40-d)

= 3j+ 4k at (1,−1, 1) (3.40-e)

Mathematica solution is shown in Fig. 3.12.

3.6 Some useful Relations

27 Some useful relations

d(A·B) = A·dB+ dA·B (3.41-a)

d(A×B) = A×dB+ dA×B (3.41-b)

∇(φ+ ξ) = ∇φ+ ∇ξ (3.41-c)

∇×(A+B) = ∇×A+ ∇×B (3.41-d)

∇·v �= v∇ (3.41-e)

∇·(φA) = (∇φ)·A+ φ(∇×A) (3.41-f)

∇·(A×B) = B·(∇×A)−A·(∇×B) (3.41-g)

∇(A·B) = (B·∇)A+ (A·∇)B+B×(∇×A) +A×(∇×B) (3.41-h)

∇·(∇φ) ≡ ∇2φ ≡ ∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
Laplacian Operator (3.41-i)

∇·(∇×A) = 0 (3.41-j)

∇×(∇φ) = 0 (3.41-k)
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‡ Curl

<< Calculus‘VectorAnalysis‘

A = 8x z^3, −2 x^2 y z, 2 y z^4<;

CurlOfA = Curl@A, Cartesian@x, y, zDD

82 z4 + 2 x2 y, 3 x z2 , -4 x y z<

<< Graphics‘PlotField3D‘

PlotVectorField3D@CurlOfA, 8x, 0, 2<, 8y, −2, 0<, 8z, 0, 2<, Axes −> Automatic, AxesLabel −> 8"x", "y", "z"<D

0
0.5

1
1.5

2x

-2

-1.5

-1
-0.5

0y

0

0.5

1

1.5

2

z

0
0.5

1
1.5

2x

2

-1.5

-1
-0.5

0y

Ö Graphics3D Ö

Div@CurlOfA, Cartesian@x, y, zDD

0

x = 1; y = −1; z = 1;

CurlOfA

80, 3, 4<

m−curl.nb 1

Figure 3.12: Mathematica Solution for the Curl of a Vector
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Chapter 4

KINEMATIC

Or on How Bodies Deform

4.1 Elementary Definition of Strain

20 We begin our detailed coverage of strain by a simplified and elementary set of defini-
tions for the 1D and 2D cases. Following this a mathematically rigorous derivation of
the various expressions for strain will follow.

4.1.1 Small and Finite Strains in 1D

21 We begin by considering an elementary case, an axial rod with initial lenght l0, and
subjected to a deformation ∆l into a final deformed length of l, Fig. 4.1.

l

0 l∆l

Figure 4.1: Elongation of an Axial Rod

22 We seek to quantify the deformation of the rod and even though we only have 2
variables (l0 and l), there are different possibilities to introduce the notion of strain. We
first define the stretch of the rod as

λ ≡ l

l0
(4.1)

This stretch is one in the undeformed case, and greater than one when the rod is elon-
gated.
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23 Using l0, l and λ we next introduce four possible definitions of the strain in 1D:

Engineering Strain ε ≡ l−l0
l0

= λ− 1

Natural Strain η = l−l0
l

= 1− 1
λ

Lagrangian Strain E ≡ 1
2

(
l2−l20
l20

)
= 1

2
(λ2 − 1)

Eulerian Strain E∗ ≡ 1
2

(
l2−l20
l2

)
= 1

2

(
1− 1

λ2

) (4.2)

we note the strong analogy between the Lagrangian and the engineering strain on the
one hand, and the Eulerian and the natural strain on the other.

24 The choice of which strain definition to use is related to the stress-strain relation (or
constitutive law) that we will later adopt.

4.1.2 Small Strains in 2D

25 The elementary definition of strains in 2D is illustrated by Fig. 4.2 and are given by

∆
u

x

∆ uy ∆
u

x
∆ uy

2

∆

∆ Y

X

Uniaxial Extension Pure Shear Without Rotation

∆

∆

X

Y

θ

θ

ψ
1

Figure 4.2: Elementary Definition of Strains in 2D

εxx ≈ ∆ux
∆X

(4.3-a)

εyy ≈ ∆uy
∆Y

(4.3-b)

γxy =
π

2
− ψ = θ2 + θ1 (4.3-c)

εxy =
1

2
γxy ≈

1

2

(
∆ux
∆Y

+
∆uy
∆X

)
(4.3-d)

In the limit as both ∆X and ∆Y approach zero, then

εxx =
∂ux
∂X

; εyy =
∂uy
∂Y

; εxy =
1

2
γxy =

1

2

(
∂ux
∂Y

+
∂uy
∂X

)
(4.4)

We note that in the expression of the shear strain, we used tan θ ≈ θ which is applicable
as long as θ is small compared to one radian.

26 We have used capital letters to represent the coordinates in the initial state, and lower
case letters for the final or current position coordinates (x = X + ux). This corresponds
to the Lagrangian strain representation.
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4.2 Strain Tensor

27 Following the simplified (and restrictive) introduction to strain, we now turn our at-
tention to a rigorous presentation of this important deformation tensor.

28 The presentation will proceed as follow. First, with reference to Fig. 4.3 we will
derive expressions for the position and displacement vectors of a single point P from the
undeformed to the deformed state. Then, we will use some of the expressions in the
introduction of the strain between two points P and Q.

4.2.1 Position and Displacement Vectors; (x,X)

29 We consider in Fig. 4.3 the undeformed configuration of a material continuum at time
t = 0 together with the deformed configuration at coordinates for each configuration.

I
I

I
i

i
i

u

Spatial

b

X

X

X

x

x

x

P

P

1

2

3

1

2

3
1

1

2

2
3

3

0

t=0

t=t

X

x

O

o

U

Material

Figure 4.3: Position and Displacement Vectors

30 In the initial configuration P0 has the position vector

X = X1I1 +X2I2 +X3I3 (4.5)

which is here expressed in terms of the material coordinates (X1, X2, X3).

31 In the deformed configuration, the particle P0 has now moved to the new position P
and has the following position vector

x = x1e1 + x2e2 + x3e3 (4.6)

which is expressed in terms of the spatial coordinates.

32 The relative orientation of the material axes (OX1X2X3) and the spatial axes (ox1x2x3)
is specified through the direction cosines aX

x .
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33 The displacement vector u connecting P0 ann P is the displacement vector which
can be expressed in both the material or spatial coordinates

U = UkIk (4.7-a)

u = ukik (4.7-b)

again Uk and uk are interrelated through the direction cosines ik = aKk IK . Substituting
above we obtain

u = uk(a
K
k IK) = UKIK = U⇒ UK = aKk uk (4.8)

34 The vector b relates the two origins u = b + x − X or if the origins are the same
(superimposed axis)

uk = xk −Xk (4.9)

Example 4-1: Displacement Vectors in Material and Spatial Forms

With respect to superposed material axis Xi and spatial axes xi, the displacement
field of a continuum body is given by: x1 = X1, x2 = X2 + AX3, and x3 = AX2 + X3
where A is constant.

1. Determine the displacement vector components in both the material and spatial
form.

2. Determine the displaced location of material particles which originally comprises
the plane circular surface X1 = 0, X2

2 +X2
3 = 1/(1−A2) if A = 1/2.

Solution:

1. From Eq. 4.9 the displacement field can be written in material coordinates as

u1 = x1 −X1 = 0 (4.10-a)

u2 = x2 −X2 = AX3 (4.10-b)

u3 = x3 −X3 = AX2 (4.10-c)

2. The displacement field can be written in matrix form as
x1
x2
x3

 =

 1 0 0
0 1 A
0 A 1




X1
X2
X3

 (4.11)

or upon inversion
X1
X2
X3

 =
1

1−A2

 1− A2 0 0
0 1 −A
0 −A 1




x1
x2
x3

 (4.12)

that is X1 = x1, X2 = (x2 −Ax3)/(1−A2), and X3 = (x3 −Ax2)/(1− A2).
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3. The displacement field can be written now in spatial coordinates as

u1 = x1 −X1 = 0 (4.13-a)

u2 = x2 −X2 =
A(x3 −Ax2)

1−A2
(4.13-b)

u3 = x3 −X3 =
A(x2 −Ax3)

a− A2
(4.13-c)

4. For the circular surface, and by direct substitution of X2 = (x2−Ax3)/(1−A2), and
X3 = (x3 − Ax2)/(1− A2) in X2

2 +X2
3 = 1/(1− A2), the circular surface becomes

the elliptical surface (1 + A2)x22 − 4Ax2x3 + (1 + A2)x23 = (1− A2) or for A = 1/2,

5x22 − 8x2x3 + 5x23 = 3 .

4.2.1.1 Lagrangian and Eulerian Descriptions; x(X, t),X(x, t)

35 When the continuum undergoes deformation (or flow), the particles in the continuum
move along various paths which can be expressed in either the material coordinates or
in the spatial coordinates system giving rise to two different formulations:

Lagrangian Formulation: gives the present location xi of the particle that occupied
the point (X1X2X3) at time t = 0, and is a mapping of the initial configuration into
the current one.

xi = xi(X1, X2, X3, t) or x = x(X, t) (4.14)

Eulerian Formulation: provides a tracing of its original position of the particle that
now occupies the location (x1, x2, x3) at time t, and is a mapping of the current
configuration into the initial one.

Xi = Xi(x1, x2, x3, t) or X = X(x, t) (4.15)

and the independent variables are the coordinates xi and t.

36 (X, t) and (x, t) are the Lagrangian and Eulerian variables respectivly.

37 IfX(x, t) is linear, then the deformation is said to be homogeneous and plane sections
remain plane.

38 For both formulation to constitute a one-to-one mapping, with continuous partial
derivatives, they must be the unique inverses of one another. A necessary and unique
condition for the inverse functions to exist is that the determinant of the Jacobian
should not vanish

|J | =
∣∣∣∣∣ ∂xi∂Xi

∣∣∣∣∣ �= 0 (4.16)
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For example, the Lagrangian description given by

x1 = X1 +X2(e
t − 1); x2 = X1(e

−t − 1) +X2; x3 = X3 (4.17)

has the inverse Eulerian description given by

X1 =
−x1 + x2(e

t − 1)

1− et − e−t
; X2 =

x1(e
−t − 1)− x2

1− et − e−t
; X3 = x3 (4.18)

Example 4-2: Lagrangian and Eulerian Descriptions

The Lagrangian description of a deformation is given by x1 = X1 + X3(e
2 − 1),

x2 = X2 +X3(e
2 − e−2), and x3 = e2X3 where e is a constant. Show that the jacobian

does not vanish and determine the Eulerian equations describing the motion.
Solution:

The Jacobian is given by ∣∣∣∣∣∣∣
1 0 (e2 − 1)
0 1 (e2 − e−2)
0 0 e2

∣∣∣∣∣∣∣ = e2 �= 0 (4.19)

Inverting the equation 1 0 (e2 − 1)
0 1 (e2 − e−2)
0 0 e2


−1

=

 1 0 (e−2 − 1)
0 1 (e−4 − 1)
0 0 e−2

 ⇒


X1 = x1 + (e−2 − 1)x3
X2 = x2 + (e−4 − 1)x3
X3 = e−2x3

(4.20)

4.2.2 Gradients

4.2.2.1 Deformation; (x∇X,X∇x)

39 Partial differentiation of Eq. 4.14 with respect to Xj produces the tensor ∂xi/∂Xj

which is the material deformation gradient. In symbolic notation ∂xi/∂Xj is repre-
sented by the dyadic

F ≡ x∇X =
∂x

∂X1
e1 +

∂x

∂X2
e2 +

∂x

∂X3
e3 =

∂xi
∂Xj

(4.21)

The matrix form of F is

F =


x1
x2
x3

 � ∂
∂X1

∂
∂X2

∂
∂X3

� =


∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 =

[
∂xi
∂Xj

]
(4.22)
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40 Similarly, differentiation of Eq. 4.15 with respect to xj produces the spatial defor-
mation gradient

H = X∇x ≡
∂X

∂x1
e1 +

∂X

∂x2
e2 +

∂X

∂x3
e3 =

∂Xi

∂xj
(4.23)

The matrix form of H is

H =


X1
X2
X3

 � ∂
∂x1

∂
∂x2

∂
∂x3

� =


∂X1

∂x1

∂X1

∂x2

∂X1

∂x3
∂X2

∂x1

∂X2

∂x2

∂X2

∂x3
∂X3

∂x1

∂X3

∂x2

∂X3

∂x3

 =

[
∂Xi

∂xj

]
(4.24)

41 The material and spatial deformation tensors are interrelated through the chain rule

∂xi
∂Xj

∂Xj

∂xk
=

∂Xi

∂xj

∂xj
∂Xk

= δik (4.25)

and thus F−1 = H or

H = F−1 (4.26)

4.2.2.1.1 † Change of Area Due to Deformation 42 In order to facilitate the derivation
of the Piola-Kirchoff stress tensor later on, we need to derive an expression for the
change in area due to deformation.

43 If we consider two material element dX(1) = dX1e1 and dX(2) = dX2e2 emanating
from X, the rectangular area formed by them at the reference time t0 is

dA0 = dX(1)×dX(2) = dX1dX2e3 = dA0e3 (4.27)

44 At time t, dX(1) deforms into dx(1) = FdX(1) and dX(2) into dx(2) = FdX(2), and the
new area is

dA = FdX(1)×FdX(2) = dX1dX2Fe1×Fe2 = dA0Fe1×Fe2 (4.28-a)

= dAn (4.28-b)

where the orientation of the deformed area is normal to Fe1 and Fe2 which is denoted
by the unit vector n. Thus,

Fe1·dAn = Fe2·dAn = 0 (4.29)

and recalling that a·b×c is equal to the determinant whose rows are components of a,
b, and c,

Fe3·dA = dA0 (Fe3·Fe1×Fe2)︸ ︷︷ ︸
det(F)

(4.30)

or

e3·FTn =
dA0
dA

det(F) (4.31)
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and FTn is in the direction of e3 so that

FTn =
dA0
dA

detFe3 ⇒ dAn = dA0 det(F)(F
−1)Te3 (4.32)

which implies that the deformed area has a normal in the direction of (F−1)Te3. A
generalization of the preceding equation would yield

dAn = dA0 det(F)(F
−1)Tn0 (4.33)

4.2.2.1.2 † Change of Volume Due to Deformation 45 If we consider an infinitesimal
element it has the following volume in material coordinate system:

dΩ0 = (dX1e1×dX2e2)·dX3e3 = dX1dX2dX3 (4.34)

in spatial cordiantes:
dΩ = (dx1e1×dx2e2)·dx3e3 (4.35)

If we define

Fi =
∂xi
∂Xj

ei (4.36)

then the deformed volume will be

dΩ = (F1dX1×F2dX2)·F3dX3 = (F1×F2·F3)dX1dX2dX3 (4.37)

or

dΩ = detFdΩ0 (4.38)

and J is called the Jacobian and is the determinant of the deformation gradient F

J =

∣∣∣∣∣∣∣
∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

∣∣∣∣∣∣∣ (4.39)

and thus the Jacobian is a measure of deformation.

46 We observe that if a material is incompressible than detF = 1.

Example 4-3: Change of Volume and Area

For the following deformation: x1 = λ1X1, x2 = −λ3X3, and x3 = λ2X2, find the
deformed volume for a unit cube and the deformed area of the unit square in the X1−X2
plane.
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Solution:

[F] =

 λ1 0 0
0 0 −λ3
0 λ2 0

 (4.40-a)

detF = λ1λ2λ3 (4.40-b)

∆V = λ1λ2λ3 (4.40-c)

∆A0 = 1 (4.40-d)

n0 = −e3 (4.40-e)

∆An = (1)(detF)(F−1)T (4.40-f)

= λ1λ2λ3


1
λ1

0 0

0 0 − 1
λ3

0 1
λ2

0




0
0
−1

 =


0

λ1λ2
0

 (4.40-g)

∆An = λ1λ2e2 (4.40-h)

4.2.2.2 Displacements; (u∇X,u∇x)

47 We now turn our attention to the displacement vector ui as given by Eq. 4.9. Partial
differentiation of Eq. 4.9 with respect to Xj produces the material displacement
gradient

∂ui
∂Xj

=
∂xi
∂Xj

− δij or J ≡ u∇X = F− I (4.41)

The matrix form of J is

J =


u1
u2
u3

 � ∂
∂X1

∂
∂X2

∂
∂X3

� =


∂u1

∂X1

∂u1

∂X2

∂u1

∂X3
∂u2

∂X1

∂u2

∂X2

∂u2

∂X3
∂u3

∂X1

∂u3

∂X2

∂u3

∂X3

 =

[
∂ui
∂Xj

]
(4.42)

48 Similarly, differentiation of Eq. 4.9 with respect to xj produces the spatial displace-
ment gradient

∂ui
∂xj

= δij −
∂Xi

∂xj
or K ≡ u∇x = I−H (4.43)

The matrix form of K is

K =


u1
u2
u3

 � ∂
∂x1

∂
∂x2

∂
∂x3

� =


∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 =

[
∂ui
∂xj

]
(4.44)
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4.2.2.3 Examples

Example 4-4: Material Deformation and Displacement Gradients

A displacement field is given by u = X1X
2
3e1 + X2

1X2e2 + X2
2X3e3, determine the

material deformation gradient F and the material displacement gradient J, and verify
that J = F− I.
Solution:
The material deformation gradient is:

∂ui
∂Xj

= J = u∇x = =


∂uX1

∂X1

∂uX1

∂X2

∂uX1

∂X3
∂uX2

∂X1

∂uX2

∂X2

∂uX2

∂X3
∂uX3

∂X1

∂uX3

∂X2

∂uX3

∂X3

 (4.45-a)

=

 X2
3 0 2X1X3

2X1X2 X2
1 0

0 2X2X3 X2
2

 (4.45-b)

Since x = u+X, the displacement field is also given by

x = X1(1 +X2
3 )︸ ︷︷ ︸

x1

e1 +X2(1 +X2
1 )︸ ︷︷ ︸

x2

e2 +X3(1 +X2
2 )︸ ︷︷ ︸

x3

e3 (4.46)

and thus

F = x∇X ≡ ∂x

∂X1
e1 +

∂x

∂X2
e2 +

∂x

∂X3
e3 =

∂xi
∂Xj

(4.47-a)

=


∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 (4.47-b)

=

 1 +X2
3 0 2X1X3

2X1X2 1 +X2
1 0

0 2X2X3 1 +X2
2

 (4.47-c)

We observe that the two second order tensors are related by J = F− I.

4.2.3 Deformation Tensors

49 Having derived expressions for ∂xi
∂Xj

and ∂Xi

∂xj
we now seek to determine dx2 and dX2

where dX and dx correspond to the distance between points P and Q in the undeformed
and deformed cases respectively.

50 We consider next the initial (undeformed) and final (deformed) configuration of a
continuum in which the material OX1, X2, X3 and spatial coordinates ox1x2x3 are super-
imposed. Neighboring particles P0 and Q0 in the initial configurations moved to P and
Q respectively in the final one, Fig. 4.4.
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Figure 4.4: Undeformed and Deformed Configurations of a Continuum

4.2.3.1 Cauchy’s Deformation Tensor; (dX)2

51 The Cauchy deformation tensor, introduced by Cauchy in 1827, B−1 (alternatively
denoted as c) gives the initial square length (dX)2 of an element dx in the deformed
configuration.

52 This tensor is the inverse of the tensor B which will not be introduced until Sect.
4.2.6.3.

53 The square of the differential element connecting Po and Q0 is

(dX)2 = dX·dX = dXidXi (4.48)

however from Eq. 4.15 the distance differential dXi is

dXi =
∂Xi

∂xj
dxj or dX = H·dx (4.49)

thus the squared length (dX)2 in Eq. 4.48 may be rewritten as

(dX)2 =
∂Xk

∂xi

∂Xk

∂xj
dxidxj = B−1

ij dxidxj (4.50-a)

= dx·B−1·dx (4.50-b)

in which the second order tensor

B−1
ij =

∂Xk

∂xi

∂Xk

∂xj
or B−1 = ∇xX·X∇x︸ ︷︷ ︸

Hc·H
(4.51)

is Cauchy’s deformation tensor.
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4.2.3.2 Green’s Deformation Tensor; (dx)2

54 The Green deformation tensor, introduced by Green in 1841, C (alternatively denoted
as B−1), referred to in the undeformed configuration, gives the new square length (dx)2

of the element dX is deformed.

55 The square of the differential element connecting Po and Q0 is now evaluated in terms
of the spatial coordinates

(dx)2 = dx·dx = dxidxi (4.52)

however from Eq. 4.14 the distance differential dxi is

dxi =
∂xi
∂Xj

dXj or dx = F·dX (4.53)

thus the squared length (dx)2 in Eq. 4.52 may be rewritten as

(dx)2 =
∂xk
∂Xi

∂xk
∂Xj

dXidXj = CijdXidXj (4.54-a)

= dX·C·dX (4.54-b)

in which the second order tensor

Cij =
∂xk
∂Xi

∂xk
∂Xj

or C = ∇Xx·x∇X︸ ︷︷ ︸
Fc·F

(4.55)

isGreen’s deformation tensor also known asmetric tensor, or deformation tensor
or right Cauchy-Green deformation tensor.

56 Inspection of Eq. 4.51 and Eq. 4.55 yields

C−1 = B−1 or B−1 = (F−1)T ·F−1 (4.56)

Example 4-5: Green’s Deformation Tensor

A continuum body undergoes the deformation x1 = X1, x2 = X2 + AX3, and x3 =
X3 + AX2 where A is a constant. Determine the deformation tensor C.
Solution:

From Eq. 4.55 C = Fc·F where F was defined in Eq. 4.21 as

F =
∂xi
∂Xj

(4.57-a)

=

 1 0 0
0 1 A
0 A 1

 (4.57-b)
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and thus

C = Fc·F (4.58-a)

=

 1 0 0
0 1 A
0 A 1


T  1 0 0

0 1 A
0 A 1

 =

 1 0 0
0 1 + A2 2A
0 2A 1 + A2

 (4.58-b)

4.2.4 Strains; (dx)2 − (dX)2

57 With (dx)2 and (dX)2 defined we can now finally introduce the concept of strain
through (dx)2 − (dX)2.

4.2.4.1 Finite Strain Tensors

58 We start with the most general case of finite strains where no constraints are imposed
on the deformation (small).

4.2.4.1.1 Lagrangian/Green’s Tensor

59 The difference (dx)2 − (dX)2 for two neighboring particles in a continuum is used as
the measure of deformation. Using Eqs. 4.54-a and 4.48 this difference is expressed
as

(dx)2 − (dX)2 =

(
∂xk
∂Xi

∂xk
∂Xj

− δij

)
dXidXj = 2EijdXidXj (4.59-a)

= dX·(Fc·F− I)·dX = 2dX·E·dX (4.59-b)

in which the second order tensor

Eij =
1

2

(
∂xk
∂Xi

∂xk
∂Xj

− δij

)
or E =

1

2
(∇Xx·x∇X︸ ︷︷ ︸

Fc·F=C

−I) (4.60)

is called the Lagrangian (or Green’s) finite strain tensor which was introduced by
Green in 1841 and St-Venant in 1844.

60 To express the Lagrangian tensor in terms of the displacements, we substitute Eq. 4.41
in the preceding equation, and after some simple algebraic manipulations, the Lagrangian
finite strain tensor can be rewritten as

Eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
or E =

1

2
(u∇X + ∇Xu︸ ︷︷ ︸

J+Jc

+∇Xu·u∇X︸ ︷︷ ︸
Jc·J

) (4.61)
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or:

E11 =
∂u1
∂X1

+
1

2

( ∂u1
∂X1

)2
+

(
∂u2
∂X1

)2
+

(
∂u3
∂X1

)2 (4.62-a)

E12 =
1

2

(
∂u1
∂X2

+
∂u2
∂X1

)
+

1

2

[
∂u1
∂X1

∂u1
∂X2

+
∂u2
∂X1

∂u2
∂X2

+
∂u3
∂X1

∂u3
∂X2

]
(4.62-b)

· · · = · · · (4.62-c)

Example 4-6: Lagrangian Tensor

Determine the Lagrangian finite strain tensor E for the deformation of example 4.2.3.2.
Solution:

C =

 1 0 0
0 1 + A2 2A
0 2A 1 + A2

 (4.63-a)

E =
1

2
(C− I) (4.63-b)

=
1

2

 0 0 0
0 A2 2A
0 2A A2

 (4.63-c)

Note that the matrix is symmetric.

4.2.4.1.2 Eulerian/Almansi’s Tensor

61 Alternatively, the difference (dx)2 − (dX)2 for the two neighboring particles in the
continuum can be expressed in terms of Eqs. 4.52 and 4.50-b this same difference is now
equal to

(dx)2 − (dX)2 =

(
δij −

∂Xk

∂xi

∂Xk

∂xj

)
dxidxj = 2E∗

ijdxidxj (4.64-a)

= dx·(I−Hc·H)·dx = 2dx·E∗·dx (4.64-b)

in which the second order tensor

E∗
ij =

1

2

(
δij −

∂Xk

∂xi

∂Xk

∂xj

)
or E∗ =

1

2
(I−∇xX·X∇x)︸ ︷︷ ︸

Hc·H=B−1

(4.65)

is called the Eulerian (or Almansi) finite strain tensor.
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62 For infinitesimal strain it was introduced by Cauchy in 1827, and for finite strain by
Almansi in 1911.

63 To express the Eulerian tensor in terms of the displacements, we substitute 4.43 in the
preceding equation, and after some simple algebraic manipulations, the Eulerian finite
strain tensor can be rewritten as

E∗
ij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

− ∂uk
∂xi

∂uk
∂xj

)
or E∗ =

1

2
(u∇x + ∇xu︸ ︷︷ ︸

K+Kc

−∇xu·u∇x︸ ︷︷ ︸
Kc·K

) (4.66)

64 Expanding

E∗
11 =

∂u1
∂x1

− 1

2

(∂u1
∂x1

)2
+

(
∂u2
∂x1

)2
+

(
∂u3
∂x1

)2 (4.67-a)

E∗
12 =

1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
− 1

2

[
∂u1
∂x1

∂u1
∂x2

+
∂u2
∂x1

∂u2
∂x2

+
∂u3
∂x1

∂u3
∂x2

]
(4.67-b)

· · · = · · · (4.67-c)

4.2.4.2 Infinitesimal Strain Tensors; Small Deformation Theory

65 The small deformation theory of continuum mechanics has as basic condition the
requirement that the displacement gradients be small compared to unity. The funda-
mental measure of deformation is the difference (dx)2 − (dX)2, which may be expressed
in terms of the displacement gradients by inserting Eq. 4.61 and 4.66 into 4.59-b and
4.64-b respectively. If the displacement gradients are small, the finite strain tensors in Eq.
4.59-b and 4.64-b reduce to infinitesimal strain tensors and the resulting equations
represent small deformations.

66 For instance, if we were to evaluate ε+ε2, for ε = 10−3 and 10−1, then we would obtain
0.001001 ≈ 0.001 and 0.11 respectively. In the first case ε2 is “negligible” compared to ε,
in the other it is not.

4.2.4.2.1 Lagrangian Infinitesimal Strain Tensor

67 In Eq. 4.61 if the displacement gradient components ∂ui
∂Xj

are each small compared to

unity, then the third term are negligible and may be dropped. The resulting tensor is
the Lagrangian infinitesimal strain tensor denoted by

Eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
or E =

1

2
(u∇X + ∇Xu︸ ︷︷ ︸

J+Jc

) (4.68)

or:

E11 =
∂u1
∂X1

(4.69-a)
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E12 =
1

2

(
∂u1
∂X2

+
∂u2
∂X1

)
(4.69-b)

· · · = · · · (4.69-c)

Note the similarity with Eq. 4.4.

4.2.4.2.2 Eulerian Infinitesimal Strain Tensor

68 Similarly, inn Eq. 4.66 if the displacement gradient components ∂ui
∂xj

are each small

compared to unity, then the third term are negligible and may be dropped. The resulting
tensor is the Eulerian infinitesimal strain tensor denoted by

E∗
ij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
or E∗ =

1

2
(u∇x + ∇xu︸ ︷︷ ︸

K+Kc

) (4.70)

69 Expanding

E∗
11 =

∂u1
∂x1

(4.71-a)

E∗
12 =

1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
(4.71-b)

· · · = · · · (4.71-c)

4.2.4.3 Examples

Example 4-7: Lagrangian and Eulerian Linear Strain Tensors

A displacement field is given by x1 = X1 + AX2, x2 = X2 + AX3, x3 = X3 + AX1
where A is constant. Calculate the Lagrangian and the Eulerian linear strain tensors,
and compare them for the case where A is very small.
Solution:
The displacements are obtained from Eq. 4.9 uk = xk −Xk or

u1 = x1 −X1 = X1 + AX2 −X1 = AX2 (4.72-a)

u2 = x2 −X2 = X2 + AX3 −X2 = AX3 (4.72-b)

u3 = x3 −X3 = X3 + AX1 −X3 = AX1 (4.72-c)

then from Eq. 4.41

J ≡ u∇X =

 0 A 0
0 0 A
A 0 0

 (4.73)
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From Eq. 4.68:

2E = (J+ Jc) =

 0 A 0
0 0 A
A 0 0

 +

 0 0 A
A 0 0
0 A 0

 (4.74-a)

=

 0 A A
A 0 A
A A 0

 (4.74-b)

To determine the Eulerian tensor, we need the displacement u in terms of x, thus
inverting the displacement field given above:

x1
x2
x3

 =

 1 A 0
0 1 A
A 0 1




X1
X2
X3

 ⇒


X1
X2
X3

 =
1

1 + A3

 1 −A A2

A2 1 −A
−A A2 1




x1
x2
x3


(4.75)

thus from Eq. 4.9 uk = xk −Xk we obtain

u1 = x1 −X1 = x1 −
1

1 + A3
(x1 − Ax2 + A2x3) =

A(A2x1 + x2 − Ax3)

1 + A3
(4.76-a)

u2 = x2 −X2 = x2 −
1

1 + A3
(A2x1 + x2 − Ax3) =

A(−Ax1 + A2x2 + x3)

1 + A3
(4.76-b)

u3 = x3 −X3 = x3 −
1

1 + A3
(−Ax1 + A2x2 + x3) =

A(x1 −Ax2 + A2x3)

1 + A3
(4.76-c)

From Eq. 4.43

K ≡ u∇x =
A

1 + A3

 A2 1 −A
−A A2 1
1 −A A2

 (4.77)

Finally, from Eq. 4.66

2E∗ = K+Kc (4.78-a)

=
A

1 + A3

 A2 1 −A
−A A2 1
1 −A A2

 +
A

1 + A3

 A2 −A 1
1 A2 −A
−A 1 A2

 (4.78-b)

=
A

1 + A3

 2A2 1− A 1− A
1−A 2A2 1− A
1−A 1− A 2A2

 (4.78-c)

as A is very small, A2 and higher power may be neglected with the results, then E∗ → E.

4.2.5 Physical Interpretation of the Strain Tensor

4.2.5.1 Small Strain

70 We finally show that the linear lagrangian tensor in small deformation Eij is nothing
else than the strain as was defined earlier in Eq.4.4.
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71 We rewrite Eq. 4.59-b as

(dx)2 − (dX)2 = (dx− dX)(dx+ dX) = 2EijdXidXj (4.79-a)

or

(dx)2 − (dX)2 = (dx− dX)(dx+ dX) = dX·2E·dX (4.79-b)

but since dx ≈ dX under current assumption of small deformation, then the previous
equation can be rewritten as

du︷ ︸︸ ︷
dx− dX

dX
= Eij

dXi

dX

dXj

dX
= Eijξiξj = ξ·E·ξ (4.80)

72 We recognize that the left hand side is nothing else than the change in length per unit
original length, and is called the normal strain for the line element having direction
cosines dXi

dX
.

73 With reference to Fig. 4.5 we consider two cases: normal and shear strain.
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d X
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X
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d X
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d X
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Normal

Shear

P
0

Q
0

2

1x

x

x

M

Q

e

e

1

2

e3 3

2

n
n

θ

3

Figure 4.5: Physical Interpretation of the Strain Tensor

Normal Strain: When Eq. 4.80 is applied to the differential element P0Q0 which lies
along the X2 axis, the result will be the normal strain because since dX1

dX
= dX3

dX
= 0

and dX2

dX
= 1. Therefore, Eq. 4.80 becomes (with ui = xi −Xi):

dx− dX

dX
= E22 =

∂u2
∂X2

(4.81)
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Likewise for the other 2 directions. Hence the diagonal terms of the linear strain
tensor represent normal strains in the coordinate system.

Shear Strain: For the diagonal terms Eij we consider the two line elements originally
located along the X2 and the X3 axes before deformation. After deformation, the
original right angle between the lines becomes the angle θ. From Eq. 4.96 (dui =(
∂ui
∂Xj

)
P0

dXj) a first order approximation gives the unit vector at P in the direction

of Q, and M as:

n2 =
∂u1
∂X2

e1 + e2 +
∂u3
∂X2

e3 (4.82-a)

n3 =
∂u1
∂X3

e1 +
∂u2
∂X3

e2 + e3 (4.82-b)

and from the definition of the dot product:

cos θ = n2·n3 = ∂u1
∂X2

∂u1
∂X3

+
∂u2
∂X3

+
∂u3
∂X2

(4.83)

or neglecting the higher order term

cos θ =
∂u2
∂X3

+
∂u3
∂X2

= 2E23 (4.84)

74 Finally taking the change in right angle between the elements as γ23 = π/2 − θ,
and recalling that for small strain theory γ23 is very small it follows that

γ23 ≈ sin γ23 = sin(π/2− θ) = cos θ = 2E23. (4.85)

Therefore the off diagonal terms of the linear strain tensor represent one half of the
angle change between two line elements originally at right angles to one another.
These components are called the shear strains.

74 The Engineering shear strain is defined as one half the tensorial shear strain, and
the resulting tensor is written as

Eij =

 ε11
1
2
γ12

1
2
γ13

1
2
γ12 ε22

1
2
γ23

1
2
γ13

1
2
γ23 ε33

 (4.86)

75 We note that a similar development paralleling the one just presented can be made for
the linear Eulerian strain tensor (where the straight lines and right angle will be in the
deformed state).

4.2.5.2 Finite Strain; Stretch Ratio

76 The simplest and most useful measure of the extensional strain of an infinitesimal
element is the stretch or stretch ratio as dx

dX
which may be defined at point P0 in the
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undeformed configuration or at P in the deformed one (Refer to the original definition
given by Eq, 4.1).

77 Hence, from Eq. 4.54-a, and Eq. 4.60 the squared stretch at P0 for the line element
along the unit vector m = dX

dX
is given by

Λ2m ≡
(
dx

dX

)2
P0

= Cij
dXi

dX

dXj

dX
or Λ2m = m·C·m (4.87)

Thus for an element originally along X2, Fig. 4.5, m = e2 and therefore dX1/dX =
dX3/dX = 0 and dX2/dX = 1, thus Eq. 4.87 (with Eq. ??) yields

Λ2e2
= C22 = 1 + 2E22 (4.88)

and similar results can be obtained for Λ2e1
and Λ2e3

.

78 Similarly from Eq. 4.50-b, the reciprocal of the squared stretch for the line element at
P along the unit vector n = dx

dx
is given by

1

λ2n
≡

(
dX

dx

)2
P

= B−1
ij

dxi
dx

dxj
dx

or
1

λ2n
= n·B−1·n (4.89)

Again for an element originally along X2, Fig. 4.5, we obtain

1

λ2e2

= 1− 2E∗
22 (4.90)

79 we note that in general Λe2 �= λe2 since the element originally along the X2 axis will
not be along the x2 after deformation. Furthermore Eq. 4.87 and 4.89 show that in the
matrices of rectangular cartesian components the diagonal elements of both C and B−1

must be positive, while the elements of E must be greater than −1
2
and those of E∗ must

be greater than +1
2
.

80 The unit extension of the element is

dx− dX

dX
=

dx

dX
− 1 = Λm − 1 (4.91)

and for the element P0Q0 along the X2 axis, the unit extension is

dx− dX

dX
= E(2) = Λe2 − 1 =

√
1 + 2E22 − 1 (4.92)

for small deformation theory E22 << 1, and

dx− dX

dX
= E(2) = (1 + 2E22)

1
2 − 1 � 1 +

1

2
2E22 − 1 � E22 (4.93)

which is identical to Eq. 4.81.

81 For the two differential line elements of Fig. 4.5, the change in angle γ23 =
π
2
− θ is

given in terms of both Λe2 and Λe3 by

sin γ23 =
2E23
Λe2Λe3

=
2E23√

1 + 2E22
√
1 + 2E33

(4.94)

Again, when deformations are small, this equation reduces to Eq. 4.85.
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4.2.6 Linear Strain and Rotation Tensors

82 Strain components are quantitative measures of certain type of relative displacement
between neighboring parts of the material. A solid material will resist such relative
displacement giving rise to internal stresses.

83 Not all kinds of relative motion give rise to strain (and stresses). If a body moves as a
rigid body, the rotational part of its motion produces relative displacement. Thus the
general problem is to express the strain in terms of the displacements by separating off
that part of the displacement distribution which does not contribute to the strain.

4.2.6.1 Small Strains

84 From Fig. 4.6 the displacements of two neighboring particles are represented by the
vectors uP0 and uQ0 and the vector

dui = uQ0
i − uP0

i or du = uQ0 − uP0 (4.95)

is called the relative displacement vector of the particle originally at Q0 with respect
to the one originally at P0.

0

Q

Q

0

0

p

Q

d X

d
u

d x

u

u
P0

P

Figure 4.6: Relative Displacement du of Q relative to P

4.2.6.1.1 Lagrangian Formulation

85 Neglecting higher order terms, and through a Taylor expansion

dui =

(
∂ui
∂Xj

)
P0

dXj or du = (u∇X)P0
dX (4.96)
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86 We also define a unit relative displacement vector dui/dX where dX is the mag-
nitude of the differential distance dXi, or dXi = ξidX, then

dui
dX

=
∂ui
∂Xj

dXj

dX
=

∂ui
∂Xj

ξj or
du

dX
= u∇X·ξ = J·ξ (4.97)

87 The material displacement gradient ∂ui
∂Xj

can be decomposed uniquely into a symmetric

and an antisymetric part, we rewrite the previous equation as

dui =


1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
︸ ︷︷ ︸

Eij

+
1

2

(
∂ui
∂Xj

− ∂uj
∂Xi

)
︸ ︷︷ ︸

Wij

 dXj (4.98-a)

or

du =

12 (u∇X + ∇Xu)︸ ︷︷ ︸
E

+
1

2
(u∇X −∇Xu)︸ ︷︷ ︸

W

 ·dX (4.98-b)

or

E =


∂u1

∂X1

1
2

(
∂u1

∂X2
+ ∂u2

∂X1

)
1
2

(
∂u1

∂X3
+ ∂u3

∂X1

)
1
2

(
∂u1

∂X2
+ ∂u2

∂X1

)
∂u2

∂X2

1
2

(
∂u2

∂X3
+ ∂u3

∂X2

)
1
2

(
∂u1

∂X3
+ ∂u3

∂X1

)
1
2

(
∂u2

∂X3
+ ∂u3

∂X2

)
∂u3

∂X3

 (4.99)

We thus introduce the linear lagrangian rotation tensor

Wij =
1

2

(
∂ui
∂Xj

− ∂uj
∂Xi

)
or W =

1

2
(u∇X −∇Xu) (4.100)

in matrix form:

W =


0 1

2

(
∂u1

∂X2
− ∂u2

∂X1

)
1
2

(
∂u1

∂X3
− ∂u3

∂X1

)
−1
2

(
∂u1

∂X2
− ∂u2

∂X1

)
0 1

2

(
∂u2

∂X3
− ∂u3

∂X2

)
−1
2

(
∂u1

∂X3
− ∂u3

∂X1

)
−1
2

(
∂u2

∂X3
− ∂u3

∂X2

)
0

 (4.101)

88 In a displacement for which Eij is zero in the vicinity of a point P0, the relative
displacement at that point will be an infinitesimal rigid body rotation. It can be
shown that this rotation is given by the linear Lagrangian rotation vector

wi =
1

2
εijkWkj or w =

1

2
∇X×u (4.102)

or
w = −W23e1 −W31e2 −W12e3 (4.103)
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4.2.6.1.2 Eulerian Formulation

89 The derivation in an Eulerian formulation parallels the one for Lagrangian formulation.
Hence,

dui =
∂ui
∂xj

dxj or du = K·dx (4.104)

90 The unit relative displacement vector will be

dui =
∂ui
∂xj

dxj
dx

=
∂ui
∂xj

ηj or
du

dx
= u∇x·η = K·β (4.105)

91 The decomposition of the Eulerian displacement gradient ∂ui
∂xj

results in

dui =


1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
︸ ︷︷ ︸

E∗
ij

+
1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
︸ ︷︷ ︸

Ωij

 dxj (4.106-a)

or

du =

12 (u∇x + ∇xu)︸ ︷︷ ︸
E∗

+
1

2
(u∇x −∇xu)︸ ︷︷ ︸

Ω

 ·dx (4.106-b)

or

E =


∂u1

∂x1

1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)
1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
∂u2

∂x2

1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)
1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)
1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)
∂u3

∂x3

 (4.107)

92 We thus introduced the linear Eulerian rotation tensor

wij =
1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
or Ω =

1

2
(u∇x −∇xu) (4.108)

in matrix form:

W =


0 1

2

(
∂u1

∂x2
− ∂u2

∂x1

)
1
2

(
∂u1

∂x3
− ∂u3

∂x1

)
−1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
0 1

2

(
∂u2

∂x3
− ∂u3

∂x2

)
−1
2

(
∂u1

∂x3
− ∂u3

∂x1

)
−1
2

(
∂u2

∂x3
− ∂u3

∂x2

)
0

 (4.109)

and the linear Eulerian rotation vector will be

ωi =
1

2
εijkωkj or ω =

1

2
∇x×u (4.110)
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4.2.6.2 Examples

Example 4-8: Relative Displacement along a specified direction

A displacement field is specified by u = X2
1X2e1+(X2−X2

3 )e2+X2
2X3e3. Determine

the relative displacement vector du in the direction of the −X2 axis at P (1, 2,−1). Deter-
mine the relative displacements uQi −uP for Q1(1, 1,−1), Q2(1, 3/2,−1), Q3(1, 7/4,−1)
and Q4(1, 15/8,−1) and compute their directions with the direction of du.
Solution:
From Eq. 4.41, J = u∇X or

∂ui
∂Xj

=

 2X1X2 X2
1 0

0 1 −2X3
0 2X2X3 X2

2

 (4.111)

thus from Eq. 4.96 du = (u∇X)P dX in the direction of −X2 or

{du} =

 4 1 0
0 1 2
0 −4 4




0
−1
0

 =


−1
−1
4

 (4.112)

By direct calculation from u we have

uP = 2e1 + e2 − 4e3 (4.113-a)

uQ1 = e1 − e3 (4.113-b)

thus

uQ1 − uP = −e1 − e2 + 3e3 (4.114-a)

uQ2 − uP =
1

2
(−e1 − e2 + 3.5e3) (4.114-b)

uQ3 − uP =
1

4
(−e1 − e2 + 3.75e3) (4.114-c)

uQ4 − uP =
1

8
(−e1 − e2 + 3.875e3) (4.114-d)

and it is clear that as Qi approaches P , the direction of the relative displacements of
the two particles approaches the limiting direction of du.

Example 4-9: Linear strain tensor, linear rotation tensor, rotation vector

Under the restriction of small deformation theory E = E∗, a displacement field is
given by u = (x1 − x3)

2e1 + (x2 + x3)
2e2 − x1x2e3. Determine the linear strain tensor,

the linear rotation tensor and the rotation vector at point P (0, 2,−1).
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Solution:

the matrix form of the displacement gradient is

[
∂ui
∂xj

] =

 2(x1 − x3) 0 −2(x1 − x3)
0 2(x2 + x3) 2(x2 + x3)

−x2 −x1 0

 (4.115-a)

[
∂ui
∂xj

]
P

=

 2 0 −2
0 2 2
−2 0 0

 (4.115-b)

Decomposing this matrix into symmetric and antisymmetric components give:

[Eij ] + [wij ] =

 2 0 −2
0 2 1
−2 1 0

+

 0 0 0
0 0 1
0 −1 0

 (4.116)

and from Eq. Eq. 4.103

w = −W23e1 −W31e2 −W12e3 = −1e1 (4.117)

4.2.6.3 Finite Strain; Polar Decomposition

93 When the displacement gradients are finite, then we no longer can decompose ∂ui
∂Xj

(Eq.

4.96) or ∂ui
∂xj

(Eq. 4.104) into a unique sum of symmetric and skew parts (pure strain and

pure rotation).

94 Thus in this case, rather than having an additive decomposition, we will have a
multiplicative decomposition.

95 we call this a polar decomposition and it should decompose the deformation gradient
in the product of two tensors, one of which represents a rigid-body rotation, while the
other is a symmetric positive-definite tensor.

96 We apply this decomposition to the deformation gradient F:

Fij ≡
∂xi
∂Xj

= RikUkj = VikRkj or F = R·U = V·R (4.118)

where R is the orthogonal rotation tensor, and U and V are positive symmetric
tensors known as the right stretch tensor and the left stretch tensor respectively.

97 The interpretation of the above equation is obtained by inserting the above equation
into dxi =

∂xi
∂Xj

dXj

dxi = RikUkjdXj = VikRkjdXj or dx = R·U·dX = V·R·dX (4.119)

and we observe that in the first form the deformation consists of a sequential stretching
(by U) and rotation (R) to be followed by a rigid body displacement to x. In the second
case, the orders are reversed, we have first a rigid body translation to x, followed by a
rotation (R) and finally a stretching (by V).
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98 To determine the stretch tensor from the deformation gradient

FTF = (RU)T (RU) = UTRTRU = UTU (4.120)

Recalling that R is an orthonormal matrix, and thus RT = R−1 then we can compute
the various tensors from

U =
√
FTF (4.121)

R = FU−1 (4.122)

V = FRT (4.123)

99 It can be shown that

U = C1/2 and V = B1/2 (4.124)

Example 4-10: Polar Decomposition I

Given x1 = X1, x2 = −3X3, x3 = 2X2, find the deformation gradient F, the right
stretch tensor U, the rotation tensor R, and the left stretch tensor V.
Solution:

From Eq. 4.22

F =


∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 =

 1 0 0
0 0 −3
0 2 0

 (4.125)

From Eq. 4.121

U2 = FTF =

 1 0 0
0 0 2
0 −3 0


 1 0 0
0 0 −3
0 2 0

 =

 1 0 0
0 4 0
0 0 9

 (4.126)

thus

U =

 1 0 0
0 2 0
0 0 3

 (4.127)

From Eq. 4.122

R = FU−1 =

 1 0 0
0 0 −3
0 2 0


 1 0 0
0 1

2
0

0 0 1
3

 =

 1 0 0
0 0 −1
0 1 0

 (4.128)

Finally, from Eq. 4.123

V = FRT =

 1 0 0
0 0 −3
0 2 0


 1 0 0
0 0 1
0 −1 0

 =

 1 0 0
0 3 0
0 0 2

 (4.129)
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Example 4-11: Polar Decomposition II

For the following deformation: x1 = λ1X1, x2 = −λ3X3, and x3 = λ2X2, find the
rotation tensor.
Solution:

[F] =

 λ1 0 0
0 0 −λ3
0 λ2 0

 (4.130)

[U]2 = [F]T [F] (4.131)

=

 λ1 0 0
0 0 λ2
0 −λ3 0


 λ1 0 0

0 0 −λ3
0 λ2 0

 =

 λ21 0 0
0 λ22 0
0 0 λ23

 (4.132)

[U] =

 λ1 0 0
0 λ2 0
0 0 λ3

 (4.133)

[R] = [F][U]−1 =

 λ1 0 0
0 0 −λ3
0 λ2 0




1
λ1

0 0

0 1
λ2

0

0 0 1
λ3

 =

 1 0 0
0 0 −1
0 1 0

 (4.134)

Thus we note that R corresponds to a 90o rotation about the e1 axis.

Example 4-12: Polar Decomposition III

Victor Saouma Introduction to Continuum Mechanics



Draft4–28 KINEMATIC

Polar Decomposition Using Mathematica
Given x1 =X 1 +2X2 , x2 =X2 , x3 =X3 , a) Obtain C, b) the principal values of C and the corresponding directions, c) the
matrix U and U-1  with respect to the principal directions, d) Obtain the matrix U and U-1  with respect to the  ei  bas
obtain the matrix R with respect to the ei  basis.

Determine the F matrix

In[1]:= F = 881, 2, 0<, 80, 1, 0<, 80, 0, 1<<

Out[1]=
i

k

jjjjjjj

1 2 0
0 1 0
0 0 1

y

{

zzzzzzz

Solve for C 

In[2]:= CST = Transpose@FD . F

Out[2]=
i

k

jjjjjjj

1 2 0
2 5 0
0 0 1

y

{

zzzzzzz

Determine Eigenvalues and Eigenvectors

In[3]:= N@Eigenvalues@CSTDD

Out[3]= 81., 0.171573, 5.82843<

In[4]:= 8v1, v2, v3< = N@Eigenvectors@CSTD, 4D

Out[4]=
i

k

jjjjjjj

0 0 1.
-2.414 1. 0
0.4142 1. 0

y

{

zzzzzzz

In[5]:= << LinearAlgebra‘Orthogonalization‘

In[6]:= vnormalized = GramSchmidt@8v3, −v2, v1<D

Out[6]=
i

k

jjjjjjj

0.382683 0.92388 0
0.92388 -0.382683 0

0 0 1.

y

{

zzzzzzz

In[7]:= CSTeigen = Chop@N@vnormalized . CST . vnormalized, 4DD

Out[7]=
i

k

jjjjjjj

5.828 0 0
0 0.1716 0
0 0 1.

y

{

zzzzzzz

Determine U with respect to the principal directions

In[8]:= Ueigen = N@Sqrt@CSTeigenD, 4D

Out[8]=
i

k

jjjjjjj

2.414 0 0
0 0.4142 0
0 0 1.

y

{

zzzzzzz

In[9]:= Ueigenminus1 = Inverse@UeigenD

Out[9]=
i

k

jjjjjjj

0.414214 0. 0.
0. 2.41421 0.
0. 0. 1.

y

{

zzzzzzz

2 m−

Determine U and U-1with respect to the  ei  basis

In[10]:= U_e = N@vnormalized . Ueigen . vnormalized, 3D

Out[10]=
i

k

jjjjjjj

0.707 0.707 0.
0.707 2.12 0.

0. 0. 1.

y

{

zzzzzzz

In[11]:= U_einverse = N@Inverse@%D, 3D

Out[11]=
i

k

jjjjjjj

2.12 -0.707 0.
-0.707 0.707 0.

0. 0. 1.

y

{

zzzzzzz

Determine R with respect to the  ei  basis

In[12]:= R = N@F . %, 3D

Out[12]=
i

k

jjjjjjj

0.707 0.707 0.
-0.707 0.707 0.

0. 0. 1.

y

{

zzzzzzz

m−polar.nb
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4.2.7 Summary and Discussion

100 From the above, we deduce the following observations:

1. If both the displacement gradients and the displacements themselves are small, then
∂ui
∂Xj

≈ ∂ui
∂xj

and thus the Eulerian and the Lagrangian infinitesimal strain tensors may

be taken as equal Eij = E∗
ij .

2. If the displacement gradients are small, but the displacements are large, we should
use the Eulerian infinitesimal representation.

3. If the displacements gradients are large, but the displacements are small, use the
Lagrangian finite strain representation.

4. If both the displacement gradients and the displacements are large, use the Eulerian
finite strain representation.

4.2.8 †Explicit Derivation

101 If the derivations in the preceding section was perceived as too complex through a
first reading, this section will present a “gentler” approach to essentially the same results
albeit in a less “elegant” mannser. The previous derivation was carried out using indicial
notation, in this section we repeat the derivation using explicitly.

102 Similarities between the two approaches is facilitated by Table 4.2.

103 Considering two points A and B in a 3D solid, the distance between them is ds

ds2 = dx2 + dy2 + dz2 (4.135)

As a result of deformation, point A moves to A′, and B to B′ the distance between the
two points is ds′, Fig. 12.7.

ds′2 = dx′2 + dy′2 + dz′2 (4.136)

104 The displacement of point A to A′ is given by

u = x′ − x⇒ dx′ = du+ dx (4.137-a)

v = y′ − y ⇒ dy′ = dv + dy (4.137-b)

w = z′ − z ⇒ dz′ = dw + dz (4.137-c)

105 Substituting these equations into Eq. 4.136, we obtain

ds′2 = dx2 + dy2 + dz2︸ ︷︷ ︸
ds2

+2dudx+ 2dvdy + 2dwdz + du2 + dv2 + dw2 (4.138)
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I
I

I
i

i
i

u

Spatial

b

X

X

X

x

x

x

P

P

1

2

3

1

2

3
1

1

2

2
3

3

0

t=0

t=t

X

x

O

o

U

Material

2
,

X 3 x3,

X

0

2 x

X 1

O

x 1,

u

x

t=0

+dX    
X

X

+d

d

d x

t=t

X

u     u

Q
0

Q

P

P

LAGRANGIAN EULERIAN
Material Spatial

Position Vector x = x(X, t) X = X(x, t)
GRADIENTS

Deformation F = x∇X ≡ ∂xi

∂Xj
H = X∇x ≡ ∂Xi

∂xj

H = F−1

Displacement ∂ui

∂Xj
= ∂xi

∂Xj
− δij or ∂ui

∂xj
= δij − ∂Xi

∂xj
or

J = u∇X = F− I K ≡ u∇x = I−H
TENSOR

dX2 = dx·B−1·dx dx2 = dX·C·dX
Cauchy Green

Deformation B−1
ij = ∂Xk

∂xi

∂Xk

∂xj
or Cij = ∂xk

∂Xi

∂xk

∂Xj
or

B−1 = ∇xX·X∇x = Hc·H C = ∇Xx·x∇X = Fc·F
C−1 = B−1

STRAINS
Lagrangian Eulerian/Almansi

dx2 − dX2 = dX·2E·dX dx2 − dX2 = dx·2E∗·dx
Finite Strain Eij = 1

2

(
∂xk

∂Xi

∂xk

∂Xj
− δij

)
or E∗

ij = 1
2

(
δij − ∂Xk

∂xi

∂Xk

∂xj

)
or

E = 1
2 (∇Xx·x∇X︸ ︷︷ ︸

Fc·F
−I) E∗ = 1

2 (I−∇xX·X∇x︸ ︷︷ ︸
Hc·H

)

Eij = 1
2

(
∂ui

∂Xj
+ ∂uj

∂Xi
+ ∂uk

∂Xi

∂uk

∂Xj

)
or E∗

ij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi
− ∂uk

∂xi

∂uk

∂xj

)
or

E = 1
2 (u∇X + ∇Xu+ ∇Xu·u∇X)︸ ︷︷ ︸

J+Jc+Jc·J
E∗ = 1

2 (u∇x + ∇xu−∇xu·u∇x)︸ ︷︷ ︸
K+Kc−Kc·K

Small Eij = 1
2

(
∂ui

∂Xj
+ ∂uj

∂Xi

)
E∗
ij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
Deformation E = 1

2 (u∇X + ∇Xu) = 1
2 (J + Jc) E∗ = 1

2 (u∇x + ∇xu) = 1
2 (K+Kc)

ROTATION TENSORS

Small [12
(
∂ui

∂Xj
+ ∂uj

∂Xi

)
+ 1

2

(
∂ui

∂Xj
− ∂uj

∂Xi

)
]dXj

[
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
+ 1

2

(
∂ui

∂xj
− ∂uj

∂xi

)]
dxj

deformation [
1
2

(u∇X + ∇Xu)︸ ︷︷ ︸
E

+
1
2

(u∇X −∇Xu)︸ ︷︷ ︸
W

]·dX [
1
2

(u∇x + ∇xu)︸ ︷︷ ︸
E∗

+
1
2

(u∇x −∇xu)︸ ︷︷ ︸
Ω

]·dx

Finite Strain F = R·U = V·R
STRESS TENSORS

Piola-Kirchoff Cauchy
First T0 = (detF)T

(
F−1

)T
Second T̃ = (detF)

(
F−1

)
T

(
F−1

)T
Table 4.1: Summary of Major Equations
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Tensorial Explicit
X1, X2, X3, dX x, y, z, ds
x1, x2, x3, dx x′, y′, z′, ds′

u1, u2, u3 u, v, w
Eij εij

Table 4.2: Tensorial vs Explicit Notation

Figure 4.7: Strain Definition

Victor Saouma Introduction to Continuum Mechanics



Draft4–32 KINEMATIC

106 From the chain rule of differrentiation

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz (4.139-a)

dv =
∂v

∂x
dx+

∂v

∂y
dy +

∂v

∂z
dz (4.139-b)

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz (4.139-c)

107 Substituting this equation into the preceding one yields the finite strains

ds′2 − ds2 = 2

∂u

∂x
+

1

2

(∂u

∂x

)2
+

(
∂v

∂x

)2
+

(
∂w

∂x

)2 dx2

+ 2

∂v

∂y
+

1

2

(∂u

∂y

)2
+

(
∂v

∂y

)2
+

(
∂w

∂y

)2 dy2

+ 2

∂w

∂z
+

1

2

(∂u

∂z

)2
+

(
∂v

∂z

)2
+

(
∂w

∂z

)2 dz2

+ 2

(
∂v

∂x
+

∂u

∂y
+

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y

)
dxdy

+ 2

(
∂w

∂x
+

∂u

∂z
+

∂u

∂x

∂u

∂z
+

∂v

∂x

∂v

∂z
+

∂w

∂x

∂w

∂z

)
dxdz

+ 2

(
∂w

∂y
+

∂v

∂z
+

∂u

∂y

∂u

∂z
+

∂v

∂y

∂v

∂z
+

∂w

∂y

∂w

∂z

)
dydz (4.140-a)

108 We observe that ds′2 − ds2 is zero if there is no relative displacement between A and
B (i.e. rigid body motion), otherwise the solid is strained. Hence ds′2 − ds2 can be
selected as an appropriate measure of the deformation of the solid, and we define the
strain components as

ds′2 − ds2 = 2εxxdx
2 + 2εyydy

2 + 2εzzdz
2 + 4εxydxdy + 4εxzdxdz + 4εyzdydz (4.141)

where
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εxx =
∂u

∂x
+

1

2

(∂u

∂x

)2
+

(
∂v

∂x

)2
+

(
∂w

∂x

)2 (4.142)

εyy =
∂v

∂y
+

1

2

(∂u

∂y

)2
+

(
∂v

∂y

)2
+

(
∂w

∂y

)2 (4.143)

εzz =
∂w

∂z
+

1

2

(∂u

∂z

)2
+

(
∂v

∂z

)2
+

(
∂w

∂z

)2 (4.144)

εxy =
1

2

(
∂v

∂x
+

∂u

∂y
+

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y

)
(4.145)

εxz =
1

2

(
∂w

∂x
+

∂u

∂z
+

∂u

∂x

∂u

∂z
+

∂v

∂x

∂v

∂z
+

∂w

∂x

∂w

∂z

)
(4.146)

εyz =
1

2

(
∂w

∂y
+

∂v

∂z
+

∂u

∂y

∂u

∂z
+

∂v

∂y

∂v

∂z
+

∂w

∂y

∂w

∂z

)
(4.147)

or

εij =
1

2
(ui,j + uj,i + uk,iuk,j) (4.148)

From this equation, we note that:

1. We define the engineering shear strain as

γij = 2εij (i �= j) (4.149)

2. If the strains are given, then these strain-displacements provide a system of (6)
nonlinear partial differential equation in terms of the unknown displacements (3).

3. εik is the Green-Lagrange strain tensor.

4. The strains have been expressed in terms of the coordinates x, y, z in the undeformed
state, i.e. in the Lagrangian coordinate which is the preferred one in structural
mechanics.

5. Alternatively we could have expressed ds′2 − ds2 in terms of coordinates in the
deformed state, i.e. Eulerian coordinates x′, y′, z′, and the resulting strains are
referred to as the Almansi strain which is the preferred one in fluid mechanics.

6. In most cases the deformations are small enough for the quadratic term to be
dropped, the resulting equations reduce to
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εxx =
∂u

∂x
(4.150)

εyy =
∂v

∂y
(4.151)

εzz =
∂w

∂z
(4.152)

γxy =
∂v

∂x
+

∂u

∂y
(4.153)

γxz =
∂w

∂x
+

∂u

∂z
(4.154)

γyz =
∂w

∂y
+

∂v

∂z
(4.155)

or

εij =
1

2
(ui,k + uk,i) (4.156)

which is called the Cauchy strain

109 In finite element, the strain is often expressed through the linear operator L

ε = Lu (4.157)

or 

εxx
εyy
εzz
εxy
εxz
εyz

︸ ︷︷ ︸
ε

=



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y


︸ ︷︷ ︸

L


ux
uy
uz

︸ ︷︷ ︸
u

(4.158)

4.2.9 Compatibility Equation

110 If εij = 1
2
(ui,j + uj,i) then we have six differential equations (in 3D the strain ten-

sor has a total of 9 terms, but due to symmetry, there are 6 independent ones) for
determining (upon integration) three unknowns displacements ui. Hence the system is
overdetermined, and there must be some linear relations between the strains.

111 It can be shown (through appropriate successive differentiation of the strain expres-
sion) that the compatibility relation for strain reduces to:

∂2εik
∂xj∂xj

+
∂2εjj
∂xi∂xk

− ∂2εjk
∂xi∂xj

− ∂2εij
∂xj∂xk

= 0. or ∇x×L×∇x = 0 (4.159)
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There are 81 equations in all, but only six are distinct

∂2ε11
∂x22

+
∂2ε22
∂x21

= 2
∂2ε12
∂x1∂x2

(4.160-a)

∂2ε22
∂x23

+
∂2ε33
∂x22

= 2
∂2ε23
∂x2∂x3

(4.160-b)

∂2ε33
∂x21

+
∂2ε11
∂x23

= 2
∂2ε31
∂x3∂x1

(4.160-c)

∂

∂x1

(
−∂ε23
∂x1

+
∂ε31
∂x2

+
∂ε12
∂x3

)
=

∂2ε11
∂x2∂x3

(4.160-d)

∂

∂x2

(
∂ε23
∂x1

− ∂ε31
∂x2

+
∂ε12
∂x3

)
=

∂2ε22
∂x3∂x1

(4.160-e)

∂

∂x3

(
∂ε23
∂x1

+
∂ε31
∂x2

− ∂ε12
∂x3

)
=

∂2ε33
∂x1∂x2

(4.160-f)

In 2D, this results in (by setting i = 2, j = 1 and l = 2):

∂2ε11
∂x22

+
∂2ε22
∂x21

=
∂2γ12
∂x1∂x2

(4.161)

(recall that 2ε12 = γ12.)

112 When he compatibility equation is written in term of the stresses, it yields:

∂2σ11
∂x22

− ν
∂σ22

2

∂x22
+

∂2σ22
∂x21

− ν
∂2σ11
∂x21

= 2 (1 + ν)
∂2σ21
∂x1∂x2

(4.162)

Example 4-13: Strain Compatibility

For the following strain field
− X2

X2
1+X

2
2

X1

2(X2
1+X

2
2 )

0
X1

2(X2
1+X

2
2 )

0 0

0 0 0

 (4.163)

does there exist a single-valued continuous displacement field?
Solution:

∂E11
∂X2

= −(X2
1 +X2

2 )−X2(2X2)

(X2
1 +X2

2 )
2

=
X2
2 −X2

1

(X2
1 +X2

2 )
2

(4.164-a)

2
∂E12
∂X1

=
(X2

1 +X2
2 )−X1(2X1)

(X2
1 +X2

2 )
2

=
X2
2 −X2

1

(X2
1 +X2

2 )
2

(4.164-b)

∂E22
∂X2

1

= 0 (4.164-c)

Victor Saouma Introduction to Continuum Mechanics



Draft4–36 KINEMATIC

⇒ ∂2E11
∂X2

2

+
∂2E22
∂X2

1

= 2
∂2E12

∂X1∂X2

√
(4.164-d)

Actually, it can be easily verified that the unique displacement field is given by

u1 = arctan
X2
X1

; u2 = 0; u3 = 0 (4.165)

to which we could add the rigid body displacement field (if any).

4.3 Lagrangian Stresses; Piola Kirchoff Stress Tensors

113 In Sect. 2.2 the discussion of stress applied to the deformed configuration dA (us-
ing spatial coordiantesx), that is the one where equilibrium must hold. The deformed
configuration being the natural one in which to characterize stress. Hence we had

df = tdA (4.166-a)

t = Tn (4.166-b)

(note the use of T instead of σ). Hence the Cauchy stress tensor was really defined in
the Eulerian space.

114 However, there are certain advantages in referring all quantities back to the unde-
formed configuration (Lagrangian) of the body because often that configuration has ge-
ometric features and symmetries that are lost through the deformation.

115 Hence, if we were to define the strain in material coordinates (in terms of X), we need
also to express the stress as a function of the material point X in material coordinates.

4.3.1 First

116 The first Piola-Kirchoff stress tensor T0 is defined in the undeformed geometry in
such a way that it results in the same total force as the traction in the deformed
configuration (where Cauchy’s stress tensor was defined). Thus, we define

df ≡ t0dA0 (4.167)

where t0 is a pseudo-stress vector in that being based on the undeformed area, it
does not describe the actual intensity of the force, however it has the same direction as
Cauchy’s stress vector t.

117 The first Piola-Kirchoff stress tensor (also known as Lagrangian Stress Tensor) is
thus the linear transformation T0 such that

t0 = T0n0 (4.168)

and for which

df = t0dA0 = tdA⇒ t0 =
dA

dA0
t (4.169)
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using Eq. 4.166-b and 4.168 the preceding equation becomes

T0n0 =
dA

dA0
Tn =

TdAn

dA0
(4.170)

and using Eq. 4.33 dAn = dA0(detF) (F
−1)T n0 we obtain

T0n0 = T(detF)
(
F−1)T n0 (4.171)

the above equation is true for all n0, therefore

T0 = (detF)T
(
F−1)T (4.172)

T =
1

(detF)
T0F

T or Tij =
1

(detF)
(T0)imFjm (4.173)

and we note that this first Piola-Kirchoff stress tensor is not symmetric in general.

118 To determine the corresponding stress vector, we solve for T0 first, then for dA0 and
n0 from dA0n0 =

1
detF

FTn (assuming unit area dA), and finally t0 = T0n0.

4.3.2 Second

119 The second Piola-Kirchoff stress tensor, T̃ is formulated differently. Instead of the
actual force df on dA, it gives the force df̃ related to the force df in the same way that
a material vector dX at X is related by the deformation to the corresponding spatial
vector dx at x. Thus, if we let

df̃ = t̃dA0 (4.174-a)

and

df = Fdf̃ (4.174-b)

where df̃ is the pseudo differential force which transforms, under the deformation
gradient F, the (actual) differential force df at the deformed position (note similarity
with dx = FdX). Thus, the pseudo vector t is in general in a differnt direction than that
of the Cauchy stress vector t.

120 The second Piola-Kirchoff stress tensor is a linear transformation T̃ such that

t̃ = T̃n0 (4.175)

thus the preceding equations can be combined to yield

df = FT̃n0dA0 (4.176)

we also have from Eq. 4.167 and 4.168

df = t0dA0 = T0n0dA0 (4.177)

Victor Saouma Introduction to Continuum Mechanics



Draft4–38 KINEMATIC

and comparing the last two equations we note that

T̃ = F−1T0 (4.178)

which gives the relationship between the first Piola-Kirchoff stress tensor T0 and the
second Piola-Kirchoff stress tensor T̃.

121 Finally the relation between the second Piola-Kirchoff stress tensor and the Cauchy
stress tensor can be obtained from the preceding equation and Eq. 4.172

T̃ = (detF)
(
F−1)T (

F−1)T (4.179)

and we note that this second Piola-Kirchoff stress tensor is always symmetric (if the
Cauchy stress tensor is symmetric).

122 To determine the corresponding stress vector, we solve for T̃ first, then for dA0 and
n0 from dA0n0 =

1
detF

FTn (assuming unit area dA), and finally t̃ = T̃n0.

Example 4-14: Piola-Kirchoff Stress Tensors

4.4 Hydrostatic and Deviatoric Strain

93 The lagrangian and Eulerian linear strain tensors can each be split into spherical
and deviator tensor as was the case for the stresses. Hence, if we define

1

3
e =

1

3
tr E (4.180)

then the components of the strain deviator E′ are given by

E ′
ij = Eij −

1

3
eδij or E′ = E− 1

3
e1 (4.181)

We note that E′ measures the change in shape of an element, while the spherical or
hydrostatic strain 1

3
e1 represents the volume change.

4.5 Principal Strains, Strain Invariants, Mohr Circle

94 Determination of the principal strains (E(3) < E(2) < E(1), strain invariants and the
Mohr circle for strain parallel the one for stresses (Sect. 2.4) and will not be repeated
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Piola−Kirchoff Stress Tensors

The  deformed configuration  of  a  body  is  described  by   x1 =X 1 ê2,  x2 =−X2 /2,  x3 =4X3 ;  If  the  Cauchy  stress  tensor  is

given by
i

k

jjjjjjjj

100
0

0
0

0 0
 
0
0

0
 
y

{

zzzzzzzz
MPa; What are the corresponding first and second Piola−Kirchoff stress tensors, and calculate the

respective stress tensors on the e3 plane in the deformed state.

‡ F tensor

CST = 880, 0, 0<, 80, 0, 0<, 80, 0, 100<<

880, 0, 0<, 80, 0, 0<, 80, 0, 100<<

F = 881 ê 2, 0, 0<, 80, 0, −1 ê 2<, 80, 4, 0<<

99 1ÄÄÄÄÄ
2
, 0, 0=, 90, 0, -

1
ÄÄÄÄÄ
2
=, 80, 4, 0<=

Finverse = Inverse@FD

982, 0, 0<, 90, 0,
1
ÄÄÄÄÄ
4
=, 80, -2, 0<=

‡ First Piola−Kirchoff Stress Tensor

Tfirst = Det@FD CST . Transpose@FinverseD

880, 0, 0<, 80, 0, 0<, 80, 25, 0<<

MatrixForm@%D

i

k

jjjjjj

0 0 0
0 0 0
0 25 0

y

{

zzzzzz

‡ Second Piola−Kirchoff Stress Tensor

Tsecond = Inverse@FD . Tfirst

980, 0, 0<, 90, 25
ÄÄÄÄÄÄÄÄ
4

, 0=, 80, 0, 0<=

MatrixForm@%D

i

k

jjjjjjjj

0 0 0

0 25ÄÄÄÄÄÄ4 0

0 0 0

y

{

zzzzzzzz

‡ Cuchy stress vector

Can be obtained from  t=CST n

tcauchy = MatrixForm@CST . 80, 0, 1<D

i

k

jjjjjj

0
0
100

y

{

zzzzzz

‡ Pseudo−Stress vector associated with the First Piola−Kirchoff stress tensor

For a unit area in the deformed state in the e3 direction, its undeformed area dA0 n0 is given by dA0 n0 = FT nÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄdet F

detF = Det@FD

1

n = 80, 0, 1<

80, 0, 1<

2 m−piola.nb

MatrixForm@Transpose@FD . n ê detFD

i

k

jjjjjj

0
4
0

y

{

zzzzzz

Thus n0 =e2 and using t0 =T0  n0  we obtain

t01st = MatrixForm@Tfirst . 80, 1, 0<D

i

k

jjjjjj

0
0
25

y

{

zzzzzz

We note that this vector is in the same direction as the Cauchy stress vector, its magnitude is one fourth of that of the
Cauchy stress vector, because the undeformed area is 4 times that of the deformed area

‡ Pseudo−Stress vector associated with the Second Piola−Kirchoff stress 
tensor

t0second = MatrixForm@Tsecond . 80, 1, 0<D

i

k

jjjjjjjj

0
25ÄÄÄÄÄÄ4
0

y

{

zzzzzzzz

We see that this pseudo stress vector is in a different direction from that of the Cauchy stress vector (and we note that
the tensor F transforms e2 into e3 ).

m−piola.nb 3
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ε
εIεε

γ
2

III II

Figure 4.8: Mohr Circle for Strain

here.

λ3 − IEλ
2 − IIEλ− IIIE = 0 (4.182)

where the symbols IE, IIE and IIIE denote the following scalar expressions in the strain
components:

IE = E11 + E22 + E33 = Eii = tr E (4.183)

IIE = −(E11E22 + E22E33 + E33E11) + E223 + E231 + E212 (4.184)

=
1

2
(EijEij −EiiEjj) =

1

2
EijEij −

1

2
I2E (4.185)

=
1

2
(E : E− I2E) (4.186)

IIIE = detE =
1

6
eijkepqrEipEjqEkr (4.187)

95 In terms of the principal strains, those invariants can be simplified into

IE = E(1) + E(2) + E(3) (4.188)

IIE = −(E(1)E(2) + E(2)E(3) + E(3)E(1)) (4.189)

IIIE = E(1)E(2)E(3) (4.190)

96 The Mohr circle uses the Engineering shear strain definition of Eq. 4.86, Fig. 4.8

Example 4-15: Strain Invariants & Principal Strains
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Determine the planes of principal strains for the following strain tensor 1
√
3 0√

3 0 0
0 0 1

 (4.191)

Solution:

The strain invariants are given by

IE = Eii = 2 (4.192-a)

IIE =
1

2
(EijEij −EiiEjj) = −1 + 3 = +2 (4.192-b)

IIIE = |Eij | = −3 (4.192-c)

The principal strains by

Eij − λδij =

 1− λ
√
3 0√

3 −λ 0
0 0 1− λ

 (4.193-a)

= (1− λ)

(
λ− 1 +

√
13

2

)(
λ− 1−

√
13

2

)
(4.193-b)

E(1) = λ(1) =
1 +

√
13

2
= 2.3 (4.193-c)

E(2) = λ(2) = 1 (4.193-d)

E(3) = λ(3) =
1−

√
13

2
= −1.3 (4.193-e)

The eigenvectors for E(1) =
1+

√
13
2

give the principal directions n(1):
1− 1+

√
13
2

√
3 0√

3 −1+
√
13
2

0

0 0 1− 1+
√
13
2




n
(1)
1

n
(1)
2

n
(1)
3

 =


(
1− 1+

√
13
2

)
n
(1)
1 +

√
3n
(1)
2√

3n
(1)
1 −

(
1+

√
13
2

)
n
(1)
2(

1− 1+
√
13
2

)
n
(1)
3

 =


0
0
0


(4.194)

which gives

n
(1)
1 =

1 +
√
13

2
√
3

n
(1)
2 (4.195-a)

n
(1)
3 = 0 (4.195-b)

n(1)·n(1) =

(
1 + 2

√
13 + 13

12
+ 1

)(
n
(1)
2

)2
= 1⇒ n12 = 0.8; (4.195-c)

⇒ n(1) = � 0.8 0.6 0 � (4.195-d)

For the second eigenvector λ(2) = 1: 1− 1
√
3 0√

3 −1 0
0 0 1− 1




n
(2)
1

n
(2)
2

n
(2)
3

 =


√
3n
(2)
2√

3n
(2)
1 − n

(2)
2

0

 =


0
0
0

 (4.196)
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which gives (with the requirement that n(2)·n(2) = 1)

n(2) = � 0 0 1 � (4.197)

Finally, the third eigenvector can be obrained by the same manner, but more easily from

n(3) = n(1)×n(2) = det

∣∣∣∣∣∣∣
e1 e2 e3
0.8 0.6 0
0 0 1

∣∣∣∣∣∣∣ = 0.6e1 − 0.8e2 (4.198)

Therefore

aji =


n(1)

n(2)

n(3)

 =

 0.8 0.6 0
0 0 1
0.6 −0.8 0

 (4.199)

and this results can be checked via

[a][E][a]T =

 0.8 0.6 0
0 0 1
0.6 −0.8 0


 1

√
3 0√

3 0 0
0 0 1


 0.8 0 0.6
0.6 0 −0.8
0 1 0

 =

 2.3 0 0
0 1 0
0 0 −1.3


(4.200)

Example 4-16: Mohr’s Circle

Construct the Mohr’s circle for the following plane strain case: 0 0 0

0 5
√
3

0
√
3 3

 (4.201)

Solution:

1 2

1

3 4 5 6
60o

2

B

D

E

F

ε

ε s

n

2

3
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We note that since E(1) = 0 is a principal value for plane strain, ttwo of the circles
are drawn as shown.

4.6 Initial or Thermal Strains

97 Initial (or thermal strain) in 2D:

εij =

[
α∆T 0
0 α∆T

]
︸ ︷︷ ︸
Plane Stress

= (1 + ν)

[
α∆T 0
0 α∆T

]
︸ ︷︷ ︸

Plane Strain

(4.202)

note there is no shear strains caused by thermal expansion.

4.7 † Experimental Measurement of Strain

98 Typically, the transducer to measure strains in a material is the strain gage. The most
common type of strain gage used today for stress analysis is the bonded resistance strain
gage shown in Figure 4.9.

Figure 4.9: Bonded Resistance Strain Gage

99 These gages use a grid of fine wire or a metal foil grid encapsulated in a thin resin
backing. The gage is glued to the carefully prepared test specimen by a thin layer of
epoxy. The epoxy acts as the carrier matrix to transfer the strain in the specimen to
the strain gage. As the gage changes in length, the tiny wires either contract or elongate
depending upon a tensile or compressive state of stress in the specimen. The cross
sectional area will increase for compression and decrease in tension. Because the wire
has an electrical resistance that is proportional to the inverse of the cross sectional area,
R α 1

A
, a measure of the change in resistance can be converted to arrive at the strain in

the material.

100 Bonded resistance strain gages are produced in a variety of sizes, patterns, and resis-
tance. One type of gage that allows for the complete state of strain at a point in a plane
to be determined is a strain gage rosette. It contains three gages aligned radially from a
common point at different angles from each other, as shown in Figure 4.10. The strain
transformation equations to convert from the three strains a t any angle to the strain at
a point in a plane are:

εa = εx cos
2 θa + εy sin

2 θa + γxy sin θa cos θa (4.203)
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εb = εx cos
2 θb + εy sin

2 θb + γxy sin θb cos θb (4.204)

εc = εx cos
2 θc + εy sin

2 θc + γxy sin θc cos θc (4.205)

Figure 4.10: Strain Gage Rosette

101 When the measured strains εa, εb, and εc, are measured at their corresponding angles
from the reference axis and substituted into the above equations the state of strain at a
point may be solved, namely, εx, εy, and γxy. In addition the principal strains may then
be computed by Mohr’s circle or the principal strain equations.

102 Due to the wide variety of styles of gages, many factors must be considered in choosing
the right gage for a particular application. Operating temperature, state of strain, and
stability of installation all influence gage selection. Bonded resistance strain gages are
well suited for making accurate and practical strain measurements because of their high
sensitivity to strains, low cost, and simple operation.

103 The measure of the change in electrical resistance when the strain gage is strained is
known as the gage factor. The gage factor is defined as the fractional change in resistance

divided by the fractional change in length along the axis of the gage. GF =
∆R
R

∆L
L

Common

gage factors are in the range of 1.5-2 for most resistive strain gages.

104 Common strain gages utilize a grid pattern as opposed to a straight length of wire
in order to reduce the gage length. This grid pattern causes the gage to be sensitive to
deformations transverse to the gage length. Therefore, corrections for transverse strains
should be computed and applied to the strain data. Some gages come with the tranverse
correction calculated into the gage factor. The transverse sensitivity factor, Kt, is defined
as the transverse gage factor divided by the longitudinal gage factor. Kt =

GFtransverse
GFlongitudinal

These sensitivity values are expressed as a percentage and vary from zero to ten percent.

105 A final consideration for maintaining accurate strain measurement is temperature
compensation. The resistance of the gage and the gage factor will change due to the
variation of resistivity and strain sensitivity with temperature. Strain gages are produced
with different temperature expansion coefficients. In order to avoid this problem, the
expansion coefficient of the strain gage should match that of the specimen. If no large
temperature change is expected this may be neglected.

106 The change in resistance of bonded resistance strain gages for most strain measure-
ments is very small. From a simple calculation, for a strain of 1 µε (µ = 10−6) with
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a 120 Ω gage and a gage factor of 2, the change in resistance produced by the gage is
∆R = 1 × 10−6 × 120 × 2 = 240 × 10−6Ω. Furthermore, it is the fractional change in
resistance that is important and the number to be measured will be in the order of a
couple of µ ohms. For large strains a simple multi-meter may suffice, but in order to
acquire sensitive measurements in the µΩ range a Wheatstone bridge circuit is necessary
to amplify this resistance. The Wheatstone bridge is described next.

4.7.1 Wheatstone Bridge Circuits

107 Due to their outstanding sensitivity, Wheatstone bridge circuits are very advantageous
for the measurement of resistance, inductance, and capacitance. Wheatstone bridges are
widely used for strain measurements. A Wheatstone bridge is shown in Figure 4.11.
It consists of 4 resistors arranged in a diamond orientation. An input DC voltage, or
excitation voltage, is applied between the top and bottom of the diamond and the output
voltage is measured across the middle. When the output voltage is zero, the bridge is
said to be balanced. One or more of the legs of the bridge may be a resistive transducer,
such as a strain gage. The other legs of the bridge are simply completion resistors with
resistance equal to that of the strain gage(s). As the resistance of one of the legs changes,
by a change in strain from a resistive strain gage for example, the previously balanced
bridge is now unbalanced. This unbalance causes a voltage to appear across the middle
of the bridge. This induced voltage may be measured with a voltmeter or the resistor
in the opposite leg may be adjusted to re-balance the bridge. In either case the change
in resistance that caused the induced voltage may be measured and converted to obtain
the engineering units of strain.

Figure 4.11: Quarter Wheatstone Bridge Circuit

4.7.2 Quarter Bridge Circuits

108 If a strain gage is oriented in one leg of the circuit and the other legs contain fixed
resistors as shown in Figure 4.11, the circuit is known as a quarter bridge circuit. The
circuit is balanced when R1

R2
= Rgage

R3
. When the circuit is unbalanced Vout = Vin(

R1

R1+R2
−

Rgage
Rgage+R3

).

109 Wheatstone bridges may also be formed with two or four legs of the bridge being
composed of resistive transducers and are called a half bridge and full bridge respectively.
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Depending upon the type of application and desired results, the equations for these
circuits will vary as shown in Figure 4.12. Here E0 is the output voltage in mVolts, E is
the excitation voltage in Volts, ε is strain and ν is Poisson’s ratio.

110 In order to illustrate how to compute a calibration factor for a particular experiment,
suppose a single active gage in uniaxial compression is used. This will correspond to the
upper Wheatstone bridge configuration of Figure 4.12. The formula then is

Figure 4.12: Wheatstone Bridge Configurations
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E0
E

=
Fε(10−3)

4 + 2Fε(10−6)
(4.206)

111 The extra term in the denominator 2Fε(10−6) is a correction factor for non-linearity.
Because this term is quite small compared to the other term in the denominator it will
be ignored. For most measurements a gain is necessary to increase the output voltage
from the Wheatstone bridge. The gain relation for the output voltage may be written as
V = GE0(10

3), where V is now in Volts. so Equation 4.206 becomes

V

EG(103)
=

Fε(10−3)
4

ε

V
=

4

FEG
(4.207)

112 Here, Equation 4.207 is the calibration factor in units of strain per volt. For common
values where F = 2.07, G = 1000, E = 5, the calibration factor is simply 4

(2.07)(1000)(5)
or

386.47 microstrain per volt.
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Chapter 5

MATHEMATICAL
PRELIMINARIES; Part III
VECTOR INTEGRALS

5.1 Integral of a Vector

20 The integral of a vector R(u) = R1(u)e1 +R2(u)e2 +R3(u)e3 is defined as∫
R(u)du = e1

∫
R1(u)du+ e2

∫
R2(u)du+ e3

∫
R3(u)du (5.1)

if a vector S(u) exists such that R(u) = d
du

(S(u)), then∫
R(u)du =

∫
d

du
(S(u)) du = S(u) + c (5.2)

5.2 Line Integral

21 Given r(u) = x(u)e1 + y(u)e2 + z(u)e3 where r(u) is a position vector defining a
curve C connecting point P1 to P2 where u = u1 and u = u2 respectively, anf given
A(x, y, z) = A1e1 +A2e2 +A3e3 being a vectorial function defined and continuous along
C, then the integral of the tangential component of A along C from P1 to P2 is given by∫ P2

P1

A·dr =
∫
C
A·dr =

∫
C
A1dx+ A2dy + A3dz (5.3)

If A were a force, then this integral would represent the corresponding work.

22 If the contour is closed, then we define the contour integral as∮
C
A·dr =

∫
C
A1dx+ A2dy + A3dz (5.4)

23 It can be shown that if A = ∇φ then∫ P2

P1

A·dr is independent of the path C connecting P1 to P2 (5.5-a)∮
C
A·dr = 0 along a closed contour line (5.5-b)
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5.3 Integration by Parts

24 The integration by part formula is

∫ b

a
u(x)v′(x)dx = u(x)v(x)|ba −

∫ b

a
v(x)u′(x)dx (5.6)

5.4 Gauss; Divergence Theorem

25 The divergence theorem (also known as Ostrogradski’s Theorem) comes repeatedly in
solid mechanics and can be stated as follows:

∫
Ω

∇·vdΩ =
∫
Γ
v.ndΓ or

∫
Ω
vi,idΩ =

∫
Γ
vinidΓ (5.7)

That is the integral of the outer normal component of a vector over a closed surface
(which is the volume flux) is equal to the integral of the divergence of the vector over
the volume bounded by the closed surface.

26 For 2D-1D transformations, we have

∫
A

∇·qdA =
∮
s
qTnds (5.8)

27 This theorem is sometime refered to as Green’s theorem in space.

5.5 Stoke’s Theorem

28 Stoke’s theorem states that

∮
C
A·dr =

∫ ∫
S
(∇×A)·ndS =

∫ ∫
S
(∇×A)·dS (5.9)

where S is an open surface with two faces confined by C

5.6 Green; Gradient Theorem

29 Green’s theorem in plane is a special case of Stoke’s theorem.

∮
(Rdx+ Sdy) =

∫
Γ

(
∂S

∂x
− ∂R

∂y

)
dxdy (5.10)
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Example 5-1: Physical Interpretation of the Divergence Theorem

Provide a physical interpretation of the Divergence Theorem.
Solution:

A fluid has a velocity field v(x, y, z) and we first seek to determine the net inflow
per unit time per unit volume in a parallelepiped centered at P (x, y, z) with dimensions
∆x,∆y,∆z, Fig. 5.1-a.

V ∆ t

n

dS

dV=dxdydz

S

dSn

c)

b)

Y

B

C

D E

F

G∆

∆

X

Z

Y

V

V

V

V

Z

X

P(X,Y,Z) H
A

∆

a)

Figure 5.1: Physical Interpretation of the Divergence Theorem

vx |x,y,z ≈ vx (5.11-a)

vx
∣∣∣x−∆x/2,y,z ≈ vx −

1

2

∂vx
∂x

∆x AFED (5.11-b)

vx
∣∣∣x+∆x/2,y,z ≈ vx +

1

2

∂vx
∂x

∆x GHCB (5.11-c)

The net inflow per unit time across the x planes is

∆Vx =

(
vx +

1

2

∂vx
∂x

∆x

)
∆y∆z −

(
vx −

1

2

∂vx
∂x

∆x

)
∆y∆z (5.12-a)

=
∂vx
∂x

∆x∆y∆z (5.12-b)

Similarly

∆Vy =
∂vy
∂y

∆x∆y∆z (5.13-a)
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∆Vz =
∂vz
∂z

∆x∆y∆z (5.13-b)

Hence, the total increase per unit volume and unit time will be given by(
∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

)
∆x∆y∆z

∆x∆y∆z
= div v = ∇·v (5.14)

Furthermore, if we consider the total of fluid crossing dS during ∆t, Fig. 5.1-b, it will
be given by (v∆t)·ndS = v·ndS∆t or the volume of fluid crossing dS per unit time is
v·ndS.

Thus for an arbitrary volume, Fig. 5.1-c, the total amount of fluid crossing a closed

surface S per unit time is
∫
S
v·ndS. But this is equal to

∫
V
∇·vdV (Eq. 5.14), thus

∫
S
v·ndS =

∫
V
∇·vdV (5.15)

which is the divergence theorem.
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Chapter 6

FUNDAMENTAL LAWS of
CONTINUUM MECHANICS

6.1 Introduction

20 We have thus far studied the stress tensors (Cauchy, Piola Kirchoff), and several other
tensors which describe strain at a point. In general, those tensors will vary from point
to point and represent a tensor field.

21 We have also obtained only one differential equation, that was the compatibility equa-
tion.

22 In this chapter, we will derive additional differential equations governing the way
stress and deformation vary at a point and with time. They will apply to any continuous
medium, and yet we will not have enough equations to determine unknown tensor field.
For that we need to wait for the next chapter where constitututive laws relating stress
and strain will be introduced. Only with constitutive equations and boundary and initial
conditions would we be able to obtain a well defined mathematical problem to solve for
the stress and deformation distribution or the displacement or velocity fields.

23 In this chapter we shall derive differential equations expressing locally the conservation
of mass, momentum and energy. These differential equations of balance will be derived
from integral forms of the equation of balance expressing the fundamental postulates of
continuum mechanics.

6.1.1 Conservation Laws

24 Conservation laws constitute a fundamental component of classical physics. A conser-
vation law establishes a balance of a scalar or tensorial quantity in voulme V bounded
by a surface S. In its most general form, such a law may be expressed as

d

dt

∫
V
AdV︸ ︷︷ ︸

Rate of variation

+
∫
S
αdS︸ ︷︷ ︸

Exchange by Diffusion

=
∫
V
AdV︸ ︷︷ ︸

Source

(6.1)
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where A is the volumetric density of the quantity of interest (mass, linear momentum,
energy, ...) a, A is the rate of volumetric density of what is provided from the outside,
and α is the rate of surface density of what is lost through the surface S of V and will
be a function of the normal to the surface n.

25 Hence, we read the previous equation as: The input quantity (provided by the right
hand side) is equal to what is lost across the boundary, and to modify A which is the
quantity of interest. The dimensions of various quantities are given by

dim(a) = dim(AL−3) (6.2-a)

dim(α) = dim(AL−2t−1) (6.2-b)

dim(A) = dim(AL−3t−1) (6.2-c)

26 Hence this chapter will apply the previous conservation law to mass, momentum, and
energy. the resulting differential equations will provide additional interesting relation
with regard to the imcompressibiltiy of solids (important in classical hydrodynamics and
plasticity theories), equilibrium and symmetry of the stress tensor, and the first law of
thermodynamics.

27 The enunciation of the preceding three conservation laws plus the second law of thermo-
dynamics, constitute what is commonly known as the fundamental laws of continuum
mechanics.

6.1.2 Fluxes

28 Prior to the enunciation of the first conservation law, we need to define the concept of
flux across a bounding surface.

29 The flux across a surface can be graphically defined through the consideration of an
imaginary surface fixed in space with continuous “medium” flowing through it. If we
assign a positive side to the surface, and take n in the positive sense, then the volume
of “material” flowing through the infinitesimal surface area dS in time dt is equal to the
volume of the cylinder with base dS and slant height vdt parallel to the velocity vector
v, Fig. 6.1 (If v·n is negative, then the flow is in the negative direction). Hence, we
define the volume flux as

Volume Flux =
∫
S
v·ndS =

∫
S
vjnjdS (6.3)

where the last form is for rectangular cartesian components.

30 We can generalize this definition and define the following fluxes per unit area through
dS:
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v

n

dS

vdt
v dtn

Figure 6.1: Flux Through Area dS

Mass Flux =
∫
S
ρv·ndS =

∫
S
ρvjnjdS (6.4)

Momentum Flux =
∫
S
ρv(v·n)dS =

∫
S
ρvkvjnjdS (6.5)

Kinetic Energy Flux =
∫
S

1

2
ρv2(v·n)dS =

∫
S

1

2
ρvivivjnjdS (6.6)

Heat flux =
∫
S
q·ndS =

∫
S
qjnjdS (6.7)

Electric flux =
∫
S
J·ndS =

∫
S
JjnjdS (6.8)

6.2 Conservation of Mass; Continuity Equation

6.2.1 Spatial Form

31 If we consider an arbitrary volume V , fixed in space, and bounded by a surface S. If
a continuous medium of density ρ fills the volume at time t, then the total mass in V is

M =
∫
V
ρ(x, t)dV (6.9)

where ρ(x, t) is a continuous function called the mass density. We note that this spatial
form in terms of x is most common in fluid mechanics.

32 The rate of increase of the total mass in the volume is

∂M

∂t
=

∫
V

∂ρ

∂t
dV (6.10)

33 The Law of conservation of mass requires that the mass of a specific portion of the
continuum remains constant. Hence, if no mass is created or destroyed inside V , then
the preceding equation must eqaul the inflow of mass (of flux) through the surface.
The outflow is equal to v·n, thus the inflow will be equal to −v·n.∫

S
(−ρvn)dS = −

∫
S
ρv·ndS = −

∫
V
∇·(ρv)dV (6.11)
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must be equal to ∂M
∂t

. Thus ∫
V

[
∂ρ

∂t
+ ∇·(ρv)

]
dV = 0 (6.12)

since the integral must hold for any arbitrary choice of dV , then we obtain

∂ρ

∂t
+ ∇·(ρv) or

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0 (6.13)

34 The chain rule will in turn give

∂(ρvi)

∂xi
= ρ

∂vi
∂xi

+ vi
∂ρ

∂xi
(6.14)

35 It can be shown that the rate of change of the density in the neighborhood of a particle
instantaneously at x by

dρ

dt
=

∂ρ

∂t
+ v·∇ρ =

∂ρ

∂t
+ vi

∂ρ

∂xi
(6.15)

where the first term gives the local rate of change of the density in the neighborhood
of the place of x, while the second term gives the convective rate of change of the
density in the neighborhood of a particle as it moves to a place having a different density.
The first term vanishes in a steady flow, while the second term vanishes in a uniform
flow.

36 Upon substitution in the last three equations, we obtain the continuity equation

dρ

dt
+ ρ

∂vi
∂xi

= 0 or
dρ

dt
+ ρ∇·v = 0 (6.16)

The vector form is independent of any choice of coordinates. This equation shows that
the divergence of the velocity vector field equals (−1/ρ)(dρ/dt) and measures the rate of
flow of material away from the particle and is equal to the unit rate of decrease of density
ρ in the neighborhood of the particle.

37 If the material is incompressible, so that the density in the neighborhood of each
material particle remains constant as it moves, then the continuity equation takes the
simpler form

∂vi
∂xi

= 0 or ∇·v = 0 (6.17)

this is the condition of incompressibility

6.2.2 Material Form

38 If material coordinates X are used, the conservation of mass, and using Eq. 4.38
(dV = |J |dV0), implies∫

V0

ρ(X, t0)dV0 =
∫
V
ρ(x, t)dV =

∫
V0

ρ(x, t)|J |dV0 (6.18)
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or ∫
V0

[ρ0 − ρ|J |]dV0 = 0 (6.19)

and for an arbitrary volume dV0, the integrand must vanish. If we also suppose that the
initial density ρ0 is everywhere positive in V0 (no empty spaces), and at time t = t0,
J = 1, then we can write

ρJ = ρ0 (6.20)

or
d

dt
(ρJ) = 0 (6.21)

which is the continuity equation due to Euler, or the Lagrangian differential
form of the continuity equation.

39 We note that this is the same equation as Eq. 6.16 which was expressed in spatial
form. Those two equations can be derived one from the other.

40 The more commonly used form if the continuity equation is Eq. 6.16.

6.3 Linear Momentum Principle; Equation of Motion

6.3.1 Momentum Principle

41 The momentum principle states that the time rate of change of the total momentum of
a given set of particles equals the vector sum of all external forces acting on the particles
of the set, provided Newton’s Third Law applies. The continuum form of this principle is
a basic postulate of continuum mechanics.∫

S
tdS +

∫
V
ρbdV =

d

dt

∫
V
ρvdV (6.22)

Then we substitute ti = Tijnj and apply the divergence theorm to obtain∫
V

(
∂Tij
∂xj

+ ρbi

)
dV =

∫
V
ρ
dvi
dt

dV (6.23-a)

∫
V

[
∂Tij
∂xj

+ ρbi − ρ
dvi
dt

]
dV = 0 (6.23-b)

or for an arbitrary volume

∂Tij
∂xj

+ ρbi = ρ
dvi
dt

or ∇T + ρb = ρ
dv

dt
(6.24)

which is Cauchy’s (first) equation of motion, or the linear momentum principle,
or more simply equilibrium equation.
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42 When expanded in 3D, this equation yields:

∂T11
∂x1

+
∂T12
∂x2

+
∂T13
∂x3

+ ρb1 = 0

∂T21
∂x1

+
∂T22
∂x2

+
∂T23
∂x3

+ ρb2 = 0 (6.25-a)

∂T31
∂x1

+
∂T32
∂x2

+
∂T33
∂x3

+ ρb3 = 0

43 We note that these equations could also have been derived from the free body diagram
shown in Fig. 6.2 with the assumption of equilibrium (via Newton’s second law) con-
sidering an infinitesimal element of dimensions dx1 × dx2 × dx3. Writing the summation
of forces, will yield

Tij,j + ρbi = 0 (6.26)

where ρ is the density, bi is the body force (including inertia).

σ +
δyy
δσyy

y
dy

τ xy

σ
σ

σ

+
δxx

dy

yy

xx

σδ xx

x
dx

τ +
δxy

τδ xy d

τ yx

τ +
δ

τδ
y

dy
yx

yx

x
x

dx

Figure 6.2: Equilibrium of Stresses, Cartesian Coordinates

Example 6-1: Equilibrium Equation

In the absence of body forces, does the following stress distribution x22 + ν(x21 − x2x) −2νx1x2 0
−2νx1x2 x21 + ν(x22 − x21) 0

0 0 ν(x21 + x22)

 (6.27)

where ν is a constant, satisfy equilibrium?
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Solution:

∂T1j
∂xj

=
∂T11
∂x1

+
∂T12
∂x2

+
∂T13
∂x3

= 2νx1 − 2νx1 = 0
√

(6.28-a)

∂T2j
∂xj

=
∂T21
∂x1

+
∂T22
∂x2

+
∂T23
∂x3

= −2νx2 + 2νx2 = 0
√

(6.28-b)

∂T3j
∂xj

=
∂T31
∂x1

+
∂T32
∂x2

+
∂T33
∂x3

= 0
√

(6.28-c)

Therefore, equilibrium is satisfied.

6.3.2 Moment of Momentum Principle

44 The moment of momentum principle states that the time rate of change of the total
moment of momentum of a given set of particles equals the vector sum of the moments
of all external forces acting on the particles of the set.

45 Thus, in the absence of distributed couples (this theory of Cosserat will not be
covered in this course) we postulate the same principle for a continuum as

∫
S
(r×t)dS +

∫
V
(r×ρb)dV =

d

dt

∫
V
(r×ρv)dV (6.29)

6.3.2.1 Symmetry of the Stress Tensor

46 We observe that the preceding equation does not furnish any new differential equation
of motion. If we substitute tn = Tn and the symmetry of the tensor is assumed, then
the linear momentum principle (Eq. 6.24) is satisfied.

47 Alternatively, we may start by using Eq. 1.18 (ci = εijkajbk) to express the cross
product in indicial form and substitute above:∫

S
(εrmnxmtn)dS +

∫
V
(εrmnxmbnρ)dV =

d

dt

∫
V
(εrmnxmρvn)dV (6.30)

we then substitute tn = Tjnnj , and apply Gauss theorem to obtain∫
V
εrmn

[
∂xmTjn
∂xj

+ xmρbn

]
dV =

∫
V
εrmn

d

dt
(xmvn)ρdV (6.31)

but since dxm/dt = vm, this becomes∫
V
εrmn

[
xm

(
∂Tjn
∂xj

+ ρbn

)
+ δmjTjn

]
dV =

∫
V
εrmn

(
vmvn + xm

dvn
dt

)
ρdV (6.32)
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but εrmnvmvn = 0 since vmvn is symmetric in the indeces mn while εrmn is antisymmetric,
and the last term on the right cancels with the first term on the left, and finally with
δmjTjn = Tmn we are left with ∫

V
εrmnTmndV = 0 (6.33)

or for an arbitrary volume V ,

εrmnTmn = 0 (6.34)

at each point, and this yields

for r = 1 T23 − T32 = 0
for r = 2 T31 − T13 = 0
for r = 3 T12 − T21 = 0

(6.35)

establishing the symmetry of the stress matrix without any assumption of equilibrium or
of uniformity of stress distribution as was done in Sect. 2.3.

48 The symmetry of the stress matrix is Cauchy’s second law of motion (1827).

6.4 Conservation of Energy; First Principle of Thermodynam-

ics

49 The first principle of thermodynamics relates the work done on a (closed) system and
the heat transfer into the system to the change in energy of the system. We shall assume
that the only energy transfers to the system are by mechanical work done on the system
by surface traction and body forces, by heat transfer through the boundary.

6.4.1 Spatial Gradient of the Velocity

50 We define L as the spatial gradient of the velocity and in turn this gradient can be
decomposed into a symmetric rate of deformation tensor D (or stretching tensor)
and a skew-symmeteric tensor W called the spin tensor or vorticity tensor1.

Lij = vi,j or L = v∇x (6.36)

L = D+W (6.37)

D =
1

2
(v∇x + ∇xv) and W =

1

2
(v∇x −∇xv) (6.38)

this term will be used in the derivation of the first principle.

6.4.2 First Principle

51 If mechanical quantities only are considered, the principle of conservation of en-
ergy for the continuum may be derived directly from the equation of motion given by

1Note similarity with Eq. 4.106-b.
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Eq. 6.24. This is accomplished by taking the integral over the volume V of the scalar
product between Eq. 6.24 and the velocity vi.∫

V
viTji,jdV +

∫
V
ρbividV =

∫
V
ρvi

dvi
dt

dV (6.39)

If we consider the right hand side∫
V
ρvi

dvi
dt

dV =
d

dt

∫
V

1

2
ρvividV =

d

dt

∫
V

1

2
ρv2dV =

dK

dt
(6.40)

which represents the time rate of change of the kinetic energy K in the continuum.

52 Also we have viTji,j = (viTji),j − vi,jTji and from Eq. 6.37 we have vi,j = Lij + Wij .
It can be shown that since Wij is skew-symmetric, and T is symmetric, that TijWij = 0,

and thus TijLij = TijDij. TD̈ is called the stress power.

53 If we consider thermal processes, the rate of increase of total heat into the continuum
is given by

Q = −
∫
S
qinidS +

∫
V
ρrdV (6.41)

Q has the dimension of power, that is ML2T−3, and the SI unit is the Watt (W). q is the
heat flux per unit area by conduction, its dimension is MT−3 and the corresponding
SI unit is Wm−2. Finally, r is the radiant heat constant per unit mass, its dimension
is MT−3L−4 and the corresponding SI unit is Wm−6.

54 We thus have

dK

dt
+

∫
V
DijTijdV =

∫
V
(viTji),jdV +

∫
V
ρvibidV +Q (6.42)

55 We next convert the first integral on the right hand side to a surface integral by the
divergence theorem (

∫
V ∇·vdV =

∫
S v.ndS) and since ti = Tijnj we obtain

dK

dt
+

∫
V
DijTijdV =

∫
S
vitidS +

∫
V
ρvibidV +Q (6.43)

dK

dt
+

dU

dt
=

dW

dt
+Q (6.44)

this equation relates the time rate of change of total mechanical energy of the continuum
on the left side to the rate of work done by the surface and body forces on the right hand
side.

56 If both mechanical and non mechanical energies are to be considered, the first principle
states that the time rate of change of the kinetic plus the internal energy is equal to the
sum of the rate of work plus all other energies supplied to, or removed from the continuum
per unit time (heat, chemical, electromagnetic, etc.).

57 For a thermomechanical continuum, it is customary to express the time rate of change
of internal energy by the integral expression

dU

dt
=

d

dt

∫
V
ρudV (6.45)
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where u is the internal energy per unit mass or specific internal energy. We note that
U appears only as a differential in the first principle, hence if we really need to evaluate
this quantity, we need to have a reference value for which U will be null. The dimension
of U is one of energy dim U = ML2T−2, and the SI unit is the Joule, similarly dim
u = L2T−2 with the SI unit of Joule/Kg.

58 In terms of energy integrals, the first principle can be rewritten as

Rate of increae︷ ︸︸ ︷
d

dt

∫
V

1

2
ρvividV︸ ︷︷ ︸

dK
dt

+
d

dt

∫
V
ρudV︸ ︷︷ ︸

dU
dt

=

Exchange︷ ︸︸ ︷∫
S
tividS +

Source︷ ︸︸ ︷∫
V
ρvibidV︸ ︷︷ ︸

dW
dt

+

Source︷ ︸︸ ︷∫
V
ρrdV −

Exchange︷ ︸︸ ︷∫
S
qinidS︸ ︷︷ ︸

Q

(6.46)

we apply Gauss theorem to convert the surface integral, collect terms and use the fact
that dV is arbitrary to obtain

ρ
du

dt
= T:D+ ρr −∇·q (6.47)

or

ρ
du

dt
= TijDij + ρr − ∂qj

∂xj
(6.48)

59 This equation expresses the rate of change of internal energy as the sum of the
stress power plus the heat added to the continuum.

60 In ideal elasticity, heat transfer is considered insignificant, and all of the input work
is assumed converted into internal energy in the form of recoverable stored elastic strain
energy, which can be recovered as work when the body is unloaded.

61 In general, however, the major part of the input work into a deforming material is not
recoverably stored, but dissipated by the deformation process causing an increase in the
body’s temperature and eventually being conducted away as heat.

6.5 Equation of State; Second Principle of Thermodynamics

62 The complete characterization of a thermodynamic system is said to describe the
state of a system (here a continuum). This description is specified, in general, by several
thermodynamic and kinematic state variables. A change in time of those state variables
constitutes a thermodynamic process. Usually state variables are not all independent,
and functional relationships exist among them through equations of state. Any state
variable which may be expressed as a single valued function of a set of other state variables
is known as a state function.

63 The first principle of thermodynamics can be regarded as an expression of the inter-
convertibility of heat and work, maintaining an energy balance. It places no restriction
on the direction of the process. In classical mechanics, kinetic and potential energy can
be easily transformed from one to the other in the absence of friction or other dissipative
mechanism.
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64 The first principle leaves unanswered the question of the extent to which conversion
process is reversible or irreversible. If thermal processes are involved (friction) dis-
sipative processes are irreversible processes, and it will be up to the second principle of
thermodynamics to put limits on the direction of such processes.

6.5.1 Entropy

65 The basic criterion for irreversibility is given by the second principle of thermo-
dynamics through the statement on the limitation of entropy production. This law
postulates the existence of two distinct state functions: θ the absolute temperature
and S the entropy with the following properties:

1. θ is a positive quantity.

2. Entropy is an extensive property, i.e. the total entropy is in a system is the sum of
the entropies of its parts.

66 Thus we can write
ds = ds(e) + ds(i) (6.49)

where ds(e) is the increase due to interaction with the exterior, and ds(i) is the internal
increase, and

ds(e) > 0 irreversible process (6.50-a)

ds(i) = 0 reversible process (6.50-b)

67 Entropy expresses a variation of energy associated with a variation in the temperature.

6.5.1.1 Statistical Mechanics

68 In statistical mechanics, entropy is related to the probability of the occurrence of that
state among all the possible states that could occur. It is found that changes of states
are more likely to occur in the direction of greater disorder when a system is left to
itself. Thus increased entropy means increased disorder.

69 Hence Boltzman’s principle postulates that entropy of a state is proportional to the
logarithm of its probability, and for a gas this would give

S = kN [ln V +
3

2
lnθ] + C (6.51)

where S is the total entropy, V is volume, θ is absolute temperature, k is Boltzman’s
constant, and C is a constant and N is the number of molecules.

6.5.1.2 Classical Thermodynamics

70 In a reversible process (more about that later), the change in specific entropy s is
given by

ds =

(
dq

θ

)
rev

(6.52)
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71 If we consider an ideal gas governed by

pv = Rθ (6.53)

where R is the gas constant, and assuming that the specific energy u is only a function
of temperature θ, then the first principle takes the form

du = dq − pdv (6.54)

and for constant volume this gives

du = dq = cvdθ (6.55)

wher cv is the specific heat at constant volume. The assumption that u = u(θ) implies
that cv is a function of θ only and that

du = cv(θ)dθ (6.56)

72 Hence we rewrite the first principle as

dq = cv(θ)dθ +Rθ
dv

v
(6.57)

or division by θ yields

s− s0 =
∫ p,v

p0,v0

dq

θ
=

∫ θ

θ0
cv(θ)

dθ

θ
+R ln

v

v0
(6.58)

which gives the change in entropy for any reversible process in an ideal gas. In this case,
entropy is a state function which returns to its initial value whenever the temperature
returns to its initial value that is p and v return to their initial values.

6.5.2 Clausius-Duhem Inequality

73 We restate the definition of entropy as heat divided by temperature, and write the
second principle

d

dt

∫
V
ρs︸ ︷︷ ︸

Rate of Entropy Increase

=
∫
V
ρ
r

θ
dV︸ ︷︷ ︸

Sources

−
∫
S

q

θ
·ndS︸ ︷︷ ︸

Exchange

+ Γ︸︷︷︸
Internal production

; Γ ≥ 0 (6.59)

dS

dt
=

Q

θ
+ Γ; Γ ≥ 0 (6.60)

Γ = 0 for reversible processes, and Γ > 0 in irreversible ones. The dimension of

S =
∫
v
ρsdV is one of energy divided by temperature or L2MT−2θ−1, and the SI unit

for entropy is Joule/Kelvin.

74 The second principle postulates that the time rate of change of total entropy S in a
continuum occupying a volume V is always greater or equal than the sum of the entropy
influx through the continuum surface plus the entropy produced internally by body sources.
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75 The previous inequality holds for any arbitrary volume, thus after transformation of
the surface integral into a volume integral, we obtain the following local version of the
Clausius-Duhem inequality which must holds at every point

ρ
ds

dt︸︷︷︸
Rate of Entropy Increase

≥ ρr

θ︸︷︷︸
Sources

− ∇·q
θ︸ ︷︷ ︸

Exchange

(6.61)

76 We next seek to express the Clausius-Duhem inequality in terms of the stress tensor,

∇·q
θ
=

1

θ
∇·q− q·∇1

θ
=

1

θ
∇·q− 1

θ2
q·∇θ (6.62)

thus

ρ
ds

dt
≥ −1

θ
∇·q +

1

θ2
q·∇θ +

ρr

θ
(6.63)

but since θ is always positive,

ρθ
ds

dt
≥ −∇·q + ρr +

1

θ
q·∇θ (6.64)

where −∇·q+ ρr is the heat input into V and appeared in the first principle Eq. 6.47

ρ
du

dt
= T:D+ ρr −∇·q (6.65)

hence, substituting, we obtain

T:D− ρ

(
du

dt
− θ

ds

dt

)
− 1

θ
q·∇θ ≥ 0 (6.66)

6.6 Balance of Equations and Unknowns

77 In the preceding sections several equations and unknowns were introduced. Let us
count them. for both the coupled and uncoupled cases.

Coupled Uncoupled
dρ
dt

+ ρ ∂vi
∂xi

= 0 Continuity Equation 1 1
∂Tij
∂xj

+ ρbi = ρdvi
dt

Equation of motion 3 3

ρdu
dt

= TijDij + ρr − ∂qj
∂xj

Energy equation 1

Total number of equations 5 4

78 Assuming that the body forces bi and distributed heat sources r are prescribed, then
we have the following unknowns:
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Coupled Uncoupled
Density ρ 1 1
Velocity (or displacement) vi (ui) 3 3
Stress components Tij 6 6
Heat flux components qi 3 -
Specific internal energy u 1 -
Entropy density s 1 -
Absolute temperature θ 1 -
Total number of unknowns 16 10

and in addition the Clausius-Duhem inequality ds
dt
≥ r

θ
− 1

ρ
div q

θ
which governs entropy

production must hold.

79 We thus need an additional 16 − 5 = 11 additional equations to make the system
determinate. These will be later on supplied by:

6 constitutive equations
3 temperature heat conduction
2 thermodynamic equations of state
11 Total number of additional equations

80 The next chapter will thus discuss constitutive relations, and a subsequent one will
separately discuss thermodynamic equations of state.

81 We note that for the uncoupled case

1. The energy equation is essentially the integral of the equation of motion.

2. The 6 missing equations will be entirely supplied by the constitutive equations.

3. The temperature field is regarded as known, or at most, the heat-conduction problem
must be solved separately and independently from the mechanical problem.

6.7 † Elements of Heat Transfer

82 One of the relations which we will need is the one which relates temperature to heat
flux. This constitutive realtion will be discussed in the next chapter under Fourrier’s law.

83 However to place the reader in the right frame of reference to understand Fourrier’s
law, this section will provide some elementary concepts of heat transfer.

84 There are three fundamental modes of heat transfer:

Conduction: takes place when a temperature gradient exists within a material and is
governed by Fourier’s Law, Fig. 6.3 on Γq:

qx = −kx
∂T

∂x
(6.67)

qy = −ky
∂T

∂y
(6.68)
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Figure 6.3: Flux vector

where T = T (x, y) is the temperature field in the medium, qx and qy are the
componenets of the heat flux (W/m2 or Btu/h-ft2), k is the thermal conductiv-
ity (W/m.oC or Btu/h-ft-oF) and ∂T

∂x
, ∂T
∂y

are the temperature gradients along the

x and y respectively. Note that heat flows from “hot” to “cool” zones, hence the
negative sign.

Convection: heat transfer takes place when a material is exposed to a moving fluid
which is at different temperature. It is governed by the Newton’s Law of Cooling

q = h(T − T∞) on Γc (6.69)

where q is the convective heat flux, h is the convection heat transfer coefficient or
film coefficient (W/m2.oC or Btu/h-ft2.oF). It depends on various factors, such as
whether convection is natural or forced, laminar or turbulent flow, type of fluid, and
geometry of the body; T and T∞ are the surface and fluid temperature, respectively.
This mode is considered as part of the boundary condition.

Radiation: is the energy transferred between two separated bodies at different tem-
peratures by means of electromagnetic waves. The fundamental law is the Stefan-
Boltman’s Law of Thermal Radiation for black bodies in which the flux is propor-
tional to the fourth power of the absolute temperature., which causes the problem
to be nonlinear. This mode will not be covered.

6.7.1 Simple 2D Derivation

85 If we consider a unit thickness, 2D differential body of dimensions dx by dy, Fig. 6.4
then

1. Rate of heat generation/sink is
I2 = Qdxdy (6.70)

2. Heat flux across the boundary of the element is shown in Fig. ?? (note similarity
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✲
qx

✲
qx + ∂qx

∂x dx

✻

qy

✻qy + ∂qy

∂y dy

✲✛

dx

✻

❄

dyQ

Figure 6.4: Flux Through Sides of Differential Element

with equilibrium equation)

I1 =

[(
qx +

∂qx
∂x

dx

)
− qxdx

]
dy+

[(
qy +

∂qy
∂y

dy

)
− qydy

]
dx =

∂qx
∂x

dxdy+
∂qy
∂y

dydx

(6.71)

3. Change in stored energy is

I3 = cρ
dφ

dt
.dxdy (6.72)

where we define the specific heat c as the amount of heat required to raise a unit
mass by one degree.

86 From the first law of thermodaynamics, energy produced I2 plus the net energy across
the boundary I1 must be equal to the energy absorbed I3, thus

I1 + I2 − I3 = 0 (6.73-a)

∂qx
∂x

dxdy +
∂qy
∂y

dydx︸ ︷︷ ︸
I1

+Qdxdy︸ ︷︷ ︸
I2

− cρ
dφ

dt
dxdy︸ ︷︷ ︸
I3

= 0 (6.73-b)

6.7.2 †Generalized Derivation

87 The amount of flow per unit time into an element of volume Ω and surface Γ is

I1 =
∫
Γ
q(−n)dΓ =

∫
Γ
D∇φ.ndΓ (6.74)

where n is the unit exterior normal to Γ, Fig. 6.5
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Figure 6.5: *Flow through a surface Γ

88 Using the divergence theorem ∫
Γ
vndΓ =

∫
Ω
div vdΩ (6.75)

Eq. 6.74 transforms into

I1 =
∫
Ω
div (D∇φ)dΩ (6.76)

89 Furthermore, if the instantaneous volumetric rate of “heat” generation or removal at
a point x, y, z inside Ω is Q(x, y, z, t), then the total amount of heat/flow produced per
unit time is

I2 =
∫
Ω
Q(x, y, z, t)dΩ (6.77)

90 Finally, we define the specific heat of a solid c as the amount of heat required to raise a
unit mass by one degree. Thus if ∆φ is a temperature change which occurs in a mass m
over a time ∆t, then the corresponding amount of heat that was added must have been
cm∆φ, or

I3 =
∫
Ω
ρc∆φdΩ (6.78)

where ρ is the density, Note that another expression of I3 is ∆t(I1 + I2).

91 The balance equation, or conservation law states that the energy produced I2 plus the
net energy across the boundary I1 must be equal to the energy absorbed I3, thus

I1 + I2 − I3 = 0 (6.79-a)∫
Ω

(
div (D∇φ) +Q− ρc

∆φ

∆t

)
dΩ = 0 (6.79-b)

but since t and Ω are both arbitrary, then

div (D∇φ) +Q− ρc
∂φ

∂t
= 0 (6.80)

or

div (D∇φ) +Q = ρc
∂φ

∂t
(6.81)

This equation can be rewritten as

∂qx
∂x

+
∂qy
∂y

+Q = ρc
∂φ

∂t
(6.82)

1. Note the similarity between this last equation, and the equation of equilibrium

∂σxx
∂x

+
∂σxy
∂y

+ ρbx = ρm
∂2ux
∂t2

(6.83-a)

∂σyy
∂y

+
∂σxy
∂x

+ ρby = ρm
∂2uy
∂t2

(6.83-b)
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2. For steady state problems, the previous equation does not depend on t, and for 2D
problems, it reduces to[

∂

∂x

(
kx

∂φ

∂x

)
+

∂

∂y

(
ky
∂φ

∂y

)]
+Q = 0 (6.84)

3. For steady state isotropic problems,

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
+

Q

k
= 0 (6.85)

which is Poisson’s equation in 3D.

4. If the heat input Q = 0, then the previous equation reduces to

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 (6.86)

which is an Elliptic (or Laplace) equation. Solutions of Laplace equations are
termed harmonic functions (right hand side is zero) which is why Eq. 6.84 is refered
to as the quasi-harmonic equation.

5. If the function depends only on x and t, then we obtain

ρc
∂φ

∂t
=

∂

∂x

(
kx

∂φ

∂x

)
+Q (6.87)

which is a parabolic (or Heat) equation.
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Chapter 7

CONSTITUTIVE EQUATIONS;
Part I LINEAR

ceiinosssttuu
Hooke, 1676

Ut tensio sic vis
Hooke, 1678

7.1 † Thermodynamic Approach

7.1.1 State Variables

20 The method of local state postulates that the thermodynamic state of a continuum
at a given point and instant is completely defined by several state variables (also
known as thermodynamic or independent variables). A change in time of those
state variables constitutes a thermodynamic process. Usually state variables are not
all independent, and functional relationships exist among them through equations of
state. Any state variable which may be expressed as a single valued function of a set of
other state variables is known as a state function.

21 The time derivatives of these variables are not involved in the definition of the state,
this postulate implies that any evolution can be considered as a succession of equilibrium
states (therefore ultra rapid phenomena are excluded).

22 The thermodynamic state is specified by n+ 1 variables ν1, ν2, · · · , νn and s where
νi are the thermodynamic substate variables and s the specific entropy. The former
have mechanical (or electromagnetic) dimensions, but are otherwise left arbitrary in the
general formulation. In ideal elasticity we have nine substate variables the components
of the strain or deformation tensors.

23 The basic assumption of thermodynamics is that in addition to the n substate
variables, just one additional dimensionally independent scalar paramer suffices to deter-
mine the specific internal energy u. This assumes that there exists a caloric equation
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of state

u = u(s,ν,X) (7.1)

24 In general the internal energy u can not be experimentally measured but rather its
derivative.

25 For instance we can define the thermodynamic temperature θ and the thermo-
dynamic “tension” τj as

θ ≡
(
∂u

∂s

)
ν

; τj ≡
(
∂u

∂νj

)
s,νi(i�=j)

; j = 1, 2, · · · , n (7.2)

where the subscript outside the parenthesis indicates that the variables are held constant.

26 By extension Ai = −ρτi would be the thermodynamic “force” and its dimension
depends on the one of νi.

7.1.2 Gibbs Relation

27 From the chain rule we can express

du

dt
=

(
∂u

∂s

)
ν

ds

dt
+ τp

dνp
dt

(7.3)

28 substituting into Clausius-Duhem inequality of Eq. 6.66

T:D− ρ

(
du

dt
− θ

ds

dt

)
− 1

θ
q·∇θ ≥ 0 (7.4)

we obtain

T:D+ ρ
ds

dt

[
θ −

(
∂u

∂s

)
ν

]
+ Ap

dνp
dt

− 1

θ
q·∇θ ≥ 0 (7.5)

but the second principle must be satisfied for all possible evolution and in particular the
one for which D = 0, dνp

dt
= 0 and ∇θ = 0 for any value of ds

dt
thus the coefficient of ds

dt
is zero or

θ =

(
∂u

∂s

)
ν

(7.6)

thus

T:D+ Ap
dνp
dt

− 1

θ
q·∇θ ≥ 0 (7.7)

and Eq. 7.3 can be rewritten as

du

dt
= θ

ds

dt
+ τp

dνp
dt

(7.8)
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and if we adopt the differential notation, we obtain Gibbs relation

du = θds+ τpdνp (7.9)

29 For fluid, the Gibbs relation takes the form

du = θds− pdv; and θ ≡
(
∂u

∂s

)
v

; −p ≡
(
∂u

∂v

)
s

(7.10)

where p is the thermodynamic pressure; and the thermodynamic tension conjugate to
the specific volume v is −p, just as θ is conjugate to s.

7.1.3 Thermal Equation of State

30 From the caloric equation of state, Eq. 7.1, and the the definitions of Eq. 7.2 it follows
that the temperature and the thermodynamic tensions are functions of the thermody-
namic state:

θ = θ(s,ν); τj = τj(s,ν) (7.11)

we assume the first one to be invertible

s = s(θ,ν) (7.12)

and substitute this into Eq. 7.1 to obtain an alternative form of the caloric equation of
state with corresponding thermal equations of state (obtained by simple substitution).

u = u(θ,ν, bX) ← (7.13)

τi = τi(θ,ν,X) (7.14)

νi = νi(θ, θ,X) (7.15)

31 The thermal equations of state resemble stress-strain relations, but some caution is
necessary in interpreting the tesnisons as stresses and the νj as strains.

7.1.4 Thermodynamic Potentials

32 Based on the assumed existence of a caloric equation of state, four thermodynamic
potentials are introduced, Table 7.1. Those potentials are derived through the Legendre-

Potential Relation to u Independent Variables
Internal energy u u s, νj
Helmholtz free energy Ψ Ψ = u− sθ θ, νj ←
Enthalpy h h = u− τjνj s, τj
Free enthalpy g g = u− sθ − τjνj θ, τj

Table 7.1: Thermodynamic Potentials
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Fenchel transformation on the basis of selected state variables best suited for a given
problem.

33 By means of the preceding equations, any one of the potentials can be expressed in
terms of any of the four choices of state variables listed in Table 7.1.

34 In any actual or hypothetical change obeying the equations of state, we have

du = θds+ τjdνj (7.16-a)

dΨ = −sdθ + τjdνj ← (7.16-b)

dh = θds− νjdτj (7.16-c)

dg = −sdθ − νjdτj (7.16-d)

and from these differentials we obtain the following partial derivative expressions

θ =

(
∂u

∂s

)
ν
; τj =

(
∂u

∂νj

)
s,νi(i�=j)

(7.17-a)

s = −
(
∂Ψ

∂θ

)
ν
; τj =

(
∂Ψ

∂νj

)
θ

← (7.17-b)

θ =

(
∂h

∂s

)
τ
; νj = −

(
∂h

∂τj

)
s,νi(i�=j)

(7.17-c)

= −
(
∂g

∂θ

)
τ
; νj = −

(
∂g

∂τj

)
θ

(7.17-d)

where the free energy Ψ is the portion of the internal energy available for doing work
at constant temperature, the enthalpy h (as defined here) is the portion of the internal
energy that can be released as heat when the thermodynamic tensions are held constant.

7.1.5 Elastic Potential or Strain Energy Function

35 Green defined an elastic material as one for which a strain-energy function exists. Such
a material is called Green-elastic or hyperelastic if there exists an elastic potential
function W or strain energy function, a scalar function of one of the strain or de-
formation tensors, whose derivative with respect to a strain component determines the
corresponding stress component.

36 For the fully recoverable case of isothermal deformation with reversible heat conduction
we have

T̃IJ = ρ0

(
∂Ψ

∂EIJ

)
θ

(7.18)

hence W = ρ0Ψ is an elastic potential function for this case, while W = ρ0u is the
potential for adiabatic isentropic case (s = constant).

37 Hyperelasticity ignores thermal effects and assumes that the elastic potential function
always exists, it is a function of the strains alone and is purely mechanical

T̃IJ =
∂W (E)

∂EIJ
(7.19)
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and W (E) is the strain energy per unit undeformed volume. If the displacement
gradients are small compared to unity, then we obtain

Tij =
∂W

∂Eij

(7.20)

which is written in terms of Cauchy stress Tij and small strain Eij .

38 We assume that the elastic potential is represented by a power series expansion in the
small-strain components.

W = c0 + cijEij +
1

2
cijkmEijEkm +

1

3
cijkmnpEijEkmEnp + · · · (7.21)

where c0 is a constant and cij , cijkm, cijkmnp denote tensorial properties required to main-
tain the invariant property of W . Physically, the second term represents the energy due
to residual stresses, the third one refers to the strain energy which corresponds to linear
elastic deformation, and the fourth one indicates nonlinear behavior.

39 Neglecting terms higher than the second degree in the series expansion, then W is
quadratic in terms of the strains

W = c0 + c1E11 + c2E22 + c3E33 + 2c4E23 + 2c5E31 + 2c6E12
+1
2
c1111E

2
11 + c1122E11E22 + c1133E11E33 + 2c1123E11E23 + 2c1131E11E31 + 2c1112E11E12

+1
2
c2222E

2
22 + c2233E22E33 + 2c2223E22E23 + 2c2231E22E31 + 2c2212E22E12

+1
2
c3333E

2
33 + 2c3323E33E23 + 2c3331E33E31 + 2c3312E33E12

+2c2323E
2
23 + 4c2331E23E31 + 4c2312E23E12

+2c3131E
2
31 + 4c3112E31E12

+2c1212E
2
12

(7.22)
we require that W vanish in the unstrained state, thus c0 = 0.

40 We next apply Eq. 7.20 to the quadratic expression of W and obtain for instance

T12 =
∂W

∂E12
= 2c6+ c1112E11+ c2212E22+ c3312E33+ c1212E12+ c1223E23+ c1231E31 (7.23)

if the stress must also be zero in the unstrained state, then c6 = 0, and similarly all the
coefficients in the first row of the quadratic expansion of W . Thus the elastic potential
function is a homogeneous quadratic function of the strains and we obtain Hooke’s
law

7.2 Experimental Observations

41 We shall discuss two experiments which will yield the elastic Young’s modulus, and
then the bulk modulus. In the former, the simplicity of the experiment is surrounded
by the intriguing character of Hooke, and in the later, the bulk modulus is mathemat-
ically related to the Green deformation tensor C, the deformation gradient F and the
Lagrangian strain tensor E.
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7.2.1 Hooke’s Law

42 Hooke’s Law is determined on the basis of a very simple experiment in which a uniaxial
force is applied on a specimen which has one dimension much greater than the other two
(such as a rod). The elongation is measured, and then the stress is plotted in terms of
the strain (elongation/length). The slope of the line is called Young’s modulus.

43 Hooke anticipated some of the most important discoveries and inventions of his time
but failed to carry many of them through to completion. He formulated the theory of
planetary motion as a problem in mechanics, and grasped, but did not develop mathe-
matically, the fundamental theory on which Newton formulated the law of gravitation.

His most important contribution was published in 1678 in the paper De Potentia
Restitutiva. It contained results of his experiments with elastic bodies, and was the first
paper in which the elastic properties of material was discussed.

“Take a wire string of 20, or 30, or 40 ft long, and fasten the upper part thereof
to a nail, and to the other end fasten a Scale to receive the weights: Then with
a pair of compasses take the distance of the bottom of the scale from the ground
or floor underneath, and set down the said distance, then put inweights into
the said scale and measure the several stretchings of the said string, and set
them down. Then compare the several stretchings of the said string, and you
will find that they will always bear the same proportions one to the other that
the weights do that made them”.

This became Hooke’s Law

σ = Eε (7.24)

44 Because he was concerned about patent rights to his invention, he did not publish his
law when first discovered it in 1660. Instead he published it in the form of an anagram
“ceiinosssttuu” in 1676 and the solution was given in 1678. Ut tensio sic vis (at the time
the two symbols u and v were employed interchangeably to denote either the vowel u or
the consonant v), i.e. extension varies directly with force.

7.2.2 Bulk Modulus

45 If, instead of subjecting a material to a uniaxial state of stress, we now subject it to a
hydrostatic pressure p and measure the change in volume ∆V .

46 From the summary of Table 4.1 we know that:

V = (detF)V0 (7.25-a)

detF =
√
detC =

√
det[I+ 2E] (7.25-b)

therefore,
V +∆V

V
=

√
det[I+ 2E] (7.26)
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we can expand the determinant of the tensor det[I+ 2E] to find

det[I+ 2E] = 1 + 2IE + 4IIE + 8IIIE (7.27)

but for small strains, IE $ IIE $ IIIE since the first term is linear in E, the second is
quadratic, and the third is cubic. Therefore, we can approximate det[I+ 2E] ≈ 1 + 2IE,
hence we define the volumetric dilatation as

∆V

V
≡ e ≈ IE = tr E (7.28)

this quantity is readily measurable in an experiment.

7.3 Stress-Strain Relations in Generalized Elasticity

7.3.1 Anisotropic

47 From Eq. 7.22 and 7.23 we obtain the stress-strain relation for homogeneous anisotropic
material

T11
T22
T33
T12
T23
T31

︸ ︷︷ ︸
Tij

=



c1111 c1112 c1133 c1112 c1123 c1131
c2222 c2233 c2212 c2223 c2231

c3333 c3312 c3323 c3331
c1212 c1223 c1231

SYM. c2323 c2331
c3131


︸ ︷︷ ︸

cijkm



E11
E22
E33

2E12(γ12)
2E23(γ23)
2E31(γ31)

︸ ︷︷ ︸
Ekm

(7.29)

which is Hooke’s law for small strain in linear elasticity.

48 We also observe that for symmetric cij we retrieve Clapeyron formula

W =
1

2
TijEij (7.30)

49 In general the elastic moduli cij relating the cartesian components of stress and strain
depend on the orientation of the coordinate system with respect to the body. If the form
of elastic potential function W and the values cij are independent of the orientation, the
material is said to be isotropic, if not it is anisotropic.
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50 cijkm is a fourth order tensor resulting with 34 = 81 terms.

 c1,1,1,1 c1,1,1,2 c1,1,1,3
c1,1,2,1 c1,1,2,2 c1,1,2,3
c1,1,3,1 c1,1,3,2 c1,1,3,3


 c1,2,1,1 c1,2,1,2 c1,2,1,3

c1,2,2,1 c1,2,2,2 c1,2,2,3
c1,2,3,1 c1,2,3,2 c1,2,3,3


 c1,3,1,1 c1,3,1,2 c1,3,1,3

c1,3,2,1 c1,3,2,2 c1,3,2,3
c1,3,3,1 c1,3,3,2 c1,3,3,3

 c2,1,1,1 c2,1,1,2 c2,1,1,3
c2,1,2,1 c2,1,2,2 c2,1,2,3
c2,1,3,1 c2,1,3,2 c2,1,3,3


 c2,2,1,1 c2,2,1,2 c2,2,1,3

c2,2,2,1 c2,2,2,2 c2,2,2,3
c2,2,3,1 c2,2,3,2 c2,2,3,3


 c2,3,1,1 c2,3,1,2 c2,3,1,3

c2,3,2,1 c2,3,2,2 c2,3,2,3
c2,3,3,1 c2,3,3,2 c2,3,3,3

 c3,1,1,1 c3,1,1,2 c3,1,1,3
c3,1,2,1 c3,1,2,2 c3,1,2,3
c3,1,3,1 c3,1,3,2 c3,1,3,3


 c3,2,1,1 c3,2,1,2 c3,2,1,3

c3,2,2,1 c3,2,2,2 c3,2,2,3
c3,2,3,1 c3,2,3,2 c3,2,3,3


 c3,3,1,1 c3,3,1,2 c3,3,1,3

c3,3,2,1 c3,3,2,2 c3,3,2,3
c3,3,3,1 c3,3,3,2 c3,3,3,3




(7.31)

But the matrix must be symmetric thanks to Cauchy’s second law of motion (i.e sym-
metry of both the stress and the strain), and thus for anisotropic material we will have

a symmetric 6 by 6 matrix with (6)(6+1)
2

= 21 independent coefficients.

51 By means of coordinate transformation we can relate the material properties in one
coordinate system (old) xi, to a new one xi, thus from Eq. 1.27 (vj = apjvp) we can
rewrite

W =
1

2
crstuErsEtu =

1

2
crstua

r
ia
s
ja
t
ka

u
mEijEkm =

1

2
cijkmEijEkm (7.32)

thus we deduce
cijkm = aria

s
ja
t
ka

u
mcrstu (7.33)

that is the fourth order tensor of material constants in old coordinates may be transformed
into a new coordinate system through an eighth-order tensor aria

s
ja
t
ka

u
m

7.3.2 Monotropic Material

52 A plane of elastic symmetry exists at a point where the elastic constants have the
same values for every pair of coordinate systems which are the reflected images of one
another with respect to the plane. The axes of such coordinate systems are referred to
as “equivalent elastic directions”.

53 If we assume x1 = x1, x2 = x2 and x3 = −x3, then the transformation xi = ajixj is
defined through

aji =

 1 0 0
0 1 0
0 0 −1

 (7.34)

where the negative sign reflects the symmetry of the mirror image with respect to the x3
plane.

54 We next substitute in Eq.7.33, and as an example we consider c1123 = ar1a
s
1a

t
2a

u
3crstu =

a11a
1
1a
2
2a
3
3c1123 = (1)(1)(1)(−1)c1123 = −c1123, obviously, this is not possible, and the only

way the relation can remanin valid is if c1123 = 0. We note that all terms in cijkl with
the index 3 occurring an odd number of times will be equal to zero. Upon substitution,
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we obtain

cijkm =



c1111 c1122 c1133 c1112 0 0
c2222 c2233 c2212 0 0

c3333 c3312 0 0
c1212 0 0

SYM. c2323 c2331
c3131


(7.35)

we now have 13 nonzero coefficients.

7.3.3 Orthotropic Material

55 If the material possesses three mutually perpendicular planes of elastic symmetry, (that
is symmetric with respect to two planes x2 and x3), then the transformation xi = ajixj
is defined through

aji =

 1 0 0
0 −1 0
0 0 −1

 (7.36)

where the negative sign reflects the symmetry of the mirror image with respect to the x3
plane. Upon substitution in Eq.7.33 we now would have

cijkm =



c1111 c1122 c1133 0 0 0
c2222 c2233 0 0 0

c3333 0 0 0
c1212 0 0

SYM. c2323 0
c3131


(7.37)

We note that in here all terms of cijkl with the indices 3 and 2 occuring an odd number
of times are again set to zero.

56 Wood is usually considered an orthotropic material and will have 9 nonzero coefficients.

7.3.4 Transversely Isotropic Material

57 A material is transversely isotropic if there is a preferential direction normal to all but
one of the three axes. If this axis is x3, then rotation about it will require that

aji =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (7.38)

substituting Eq. 7.33 into Eq. 7.41, using the above transformation matrix, we obtain

c1111 = (cos4 θ)c1111 + (cos2 θ sin2 θ)(2c1122 + 4c1212) + (sin4 θ)c2222 (7.39-a)

c1122 = (cos2 θ sin2 θ)c1111 + (cos4 θ)c1122 − 4(cos2 θ sin2 θ)c1212 + (sin4 θ)c2211 (7.39-b)

+(sin2 θ cos2 θ)c2222 (7.39-c)

c1133 = (cos2 θ)c1133 + (sin2 θ)c2233 (7.39-d)
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c2222 = (sin4 θ)c1111 + (cos2 θ sin2 θ)(2c1122 + 4c1212) + (cos4 θ)c2222 (7.39-e)

c1212 = (cos2 θ sin2 θ)c1111 − 2(cos2 θ sin2 θ)c1122 − 2(cos2 θ sin2 θ)c1212 + (cos4 θ)c1212(7.39-f)

+(sin2 θ cos2 θ)c2222 + sin4 θc1212 (7.39-g)
...

But in order to respect our initial assumption about symmetry, these results require
that

c1111 = c2222 (7.40-a)

c1133 = c2233 (7.40-b)

c2323 = c3131 (7.40-c)

c1212 =
1

2
(c1111 − c1122) (7.40-d)

yielding

cijkm =



c1111 c1122 c1133 0 0 0
c2222 c2233 0 0 0

c3333 0 0 0
1
2
(c1111 − c1122) 0 0

SYM. c2323 0
c3131


(7.41)

we now have 5 nonzero coefficients.

58 It should be noted that very few natural or man-made materials are truly orthotropic
(certain crystals as topaz are), but a number are transversely isotropic (laminates, shist,
quartz, roller compacted concrete, etc...).

7.3.5 Isotropic Material

59 An isotropic material is symmetric with respect to every plane and every axis, that is
the elastic properties are identical in all directions.

60 To mathematically characterize an isotropic material, we require coordinate trans-
formation with rotation about x2 and x1 axes in addition to all previous coordinate
transformations. This process will enforce symmetry about all planes and all axes.

61 The rotation about the x2 axis is obtained through

aji =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (7.42)

we follow a similar procedure to the case of transversely isotropic material to obtain

c1111 = c3333 (7.43-a)

c3131 =
1

2
(c1111 − c1133) (7.43-b)
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62 next we perform a rotation about the x1 axis

aji =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (7.44)

it follows that

c1122 = c1133 (7.45-a)

c3131 =
1

2
(c3333 − c1133) (7.45-b)

c2323 =
1

2
(c2222 − c2233) (7.45-c)

which will finally give

cijkm =



c1111 c1122 c1133 0 0 0
c2222 c2233 0 0 0

c3333 0 0 0
a 0 0

SYM. b 0
c


(7.46)

with a = 1
2
(c1111 − c1122), b =

1
2
(c2222 − c2233), and c = 1

2
(c3333 − c1133).

63 If we denote c1122 = c1133 = c2233 = λ and c1212 = c2323 = c3131 = µ then from the
previous relations we determine that c1111 = c2222 = c3333 = λ+ 2µ, or

cijkm =



λ+ 2µ λ λ 0 0 0
λ+ 2µ λ 0 0 0

λ+ 2µ 0 0 0
µ 0 0

SYM. µ 0
µ


(7.47)

= λδijδkm + µ(δikδjm + δimδkj) (7.48)

and we are thus left with only two independent non zero coefficients λ and µ which are
called Lame’s constants.

64 Substituting the last equation into Eq. 7.29,

Tij = [λδijδkm + µ(δikδjm + δimδkj)]Ekm (7.49)

Or in terms of λ and µ, Hooke’s Law for an isotropic body is written as

Tij = λδijEkk + 2µEij or T = λIE + 2µE (7.50)

Eij =
1

2µ

(
Tij −

λ

3λ+ 2µ
δijTkk

)
or E =

−λ
2µ(3λ+ 2µ)

IT +
1

2µ
T (7.51)

65 It should be emphasized that Eq. 7.47 is written in terms of the Engineering strains
(Eq. 7.29) that is γij = 2Eij for i �= j. On the other hand the preceding equations are
written in terms of the tensorial strains Eij
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7.3.5.1 Engineering Constants

66 The stress-strain relations were expressed in terms of Lame’s parameters which can not
be readily measured experimentally. As such, in the following sections we will reformulate
those relations in terms of “engineering constants” (Young’s and the bulk’s modulus).
This will be done for both the isotropic and transversely isotropic cases.

7.3.5.1.1 Isotropic Case

7.3.5.1.1.1 Young’s Modulus

67 In order to avoid certain confusion between the strain E and the elastic constant E,
we adopt the usual engineering notation Tij → σij and Eij → εij

68 If we consider a simple uniaxial state of stress in the x1 direction, then from Eq. 7.51

ε11 =
λ+ µ

µ(3λ+ 2µ)
σ (7.52-a)

ε22 = ε33 =
−λ

2µ(3λ+ 2µ)
σ (7.52-b)

0 = ε12 = ε23 = ε13 (7.52-c)

69 Yet we have the elementary relations in terms engineering constants E Young’s mod-
ulus and ν Poisson’s ratio

ε11 =
σ

E
(7.53-a)

ν = −ε22
ε11

= −ε33
ε11

(7.53-b)

then it follows that

1

E
=

λ + µ

µ(3λ+ 2µ)
; ν =

λ

2(λ+ µ)
(7.54)

λ =
νE

(1 + ν)(1− 2ν)
;µ = G =

E

2(1 + ν)
(7.55)

70 Similarly in the case of pure shear in the x1x3 and x2x3 planes, we have

σ21 = σ12 = τ all other σij = 0 (7.56-a)

2ε12 =
τ

G
(7.56-b)

and the µ is equal to the shear modulus G.

71 Hooke’s law for isotropic material in terms of engineering constants becomes
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σij =
E

1 + ν

(
εij +

ν

1− 2ν
δijεkk

)
or σ =

E

1 + ν

(
ε +

ν

1− 2ν
Iε

)
(7.57)

εij =
1 + ν

E
σij −

ν

E
δijσkk or ε =

1 + ν

E
σ − ν

E
Iσ (7.58)

72 When the strain equation is expanded in 3D cartesian coordinates it would yield:

εxx
εyy
εzz

γxy(2εxy)
γyz(2εyz)
γzx(2εzx)


=

1

E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν





σxx
σyy
σzz
τxy
τyz
τzx


(7.59)

73 If we invert this equation, we obtain

σxx
σyy
σzz
τxy
τyz
τzx


=



E
(1+ν)(1−2ν)

 1− ν ν ν
ν 1− ν ν
ν ν 1− ν

 0

0 G

 1 0 0
0 1 0
0 0 1







εxx
εyy
εzz

γxy(2εxy)
γyz(2εyz)
γzx(2εzx)


(7.60)

7.3.5.1.1.2 Bulk’s Modulus; Volumetric and Deviatoric Strains

74 We can express the trace of the stress Iσ in terms of the volumetric strain Iε From
Eq. 7.50

σii = λδiiεkk + 2µεii = (3λ+ 2µ)εii ≡ 3Kεii (7.61)

or

K = λ +
2

3
µ (7.62)

75 We can provide a complement to the volumetric part of the constitutive equations by
substracting the trace of the stress from the stress tensor, hence we define the deviatoric
stress and strains as as

σ′ ≡ σ − 1

3
(tr σ)I (7.63)

ε′ ≡ ε− 1

3
(tr ε)I (7.64)

and the corresponding constitutive relation will be

σ = KeI+ 2µε′ (7.65)

ε =
p

3K
I+

1

2µ
σ′ (7.66)

where p ≡ 1
3
tr (σ) is the pressure, and σ′ = σ − pI is the stress deviator.
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7.3.5.1.1.3 Restriction Imposed on the Isotropic Elastic Moduli

76 We can rewrite Eq. 7.20 as
dW = TijdEij (7.67)

but since dW is a scalar invariant (energy), it can be expressed in terms of volumetric
(hydrostatic) and deviatoric components as

dW = −pde+ σ′
ijdE

′
ij (7.68)

substituting p = −Ke and σ′
ij = 2GE ′

ij, and integrating, we obtain the following expres-
sion for the isotropic strain energy

W =
1

2
Ke2 +GE ′

ijE
′
ij (7.69)

and since positive work is required to cause any deformation W > 0 thus

λ+
2

3
G ≡ K > 0 (7.70-a)

G > 0 (7.70-b)

ruling out K = G = 0, we are left with

E > 0; −1 < ν <
1

2
(7.71)

77 The isotropic strain energy function can be alternatively expressed as

W =
1

2
λe2 +GEijEij (7.72)

78 From Table 7.2, we observe that ν = 1
2
implies G = E

3
, and 1

K
= 0 or elastic incom-

pressibility.

λ, µ E, ν µ, ν E, µ K, ν

λ λ νE
(1+ν)(1−2ν)

2µν
1−2ν

µ(E−2µ)
3µ−E

3Kν
1+ν

µ µ E
2(1+ν) µ µ 3K(1−2ν)

2(1+ν)

K λ+ 2
3µ

E
3(1−2ν)

2µ(1+ν)
3(1−2ν)

µE
3(3µ−E) K

E µ(3λ+2µ)
λ+µ E 2µ(1 + ν) E 3K(1− 2ν)

ν λ
2(λ+µ) ν ν E

2µ − 1 ν

Table 7.2: Conversion of Constants for an Isotropic Elastic Material

79 The elastic properties of selected materials is shown in Table 7.3.
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Material E (MPa) ν
A316 Stainless Steel 196,000 0.3

A5 Aluminum 68,000 0.33
Bronze 61,000 0.34

Plexiglass 2,900 0.4
Rubber 2 →0.5
Concrete 60,000 0.2
Granite 60,000 0.27

Table 7.3: Elastic Properties of Selected Materials at 200c

7.3.5.1.2 Transversly Isotropic Case

80 For transversely isotropic, we can express the stress-strain relation in tems of

εxx = a11σxx + a12σyy + a13σzz
εyy = a12σxx + a11σyy + a13σzz
εzz = a13(σxx + σyy) + a33σzz
γxy = 2(a11 − a12)τxy
γyz = a44τxy
γxz = a44τxz

(7.73)

and

a11 =
1

E
; a12 = − ν

E
; a13 = − ν ′

E ′ ; a33 = − 1

E ′ ; a44 = − 1

µ′ (7.74)

where E is the Young’s modulus in the plane of isotropy and E ′ the one in the plane
normal to it. ν corresponds to the transverse contraction in the plane of isotropy when
tension is applied in the plane; ν ′ corresponding to the transverse contraction in the plane
of isotropy when tension is applied normal to the plane; µ′ corresponding to the shear
moduli for the plane of isotropy and any plane normal to it, and µ is shear moduli for
the plane of isotropy.

7.3.5.2 Special 2D Cases

81 Often times one can make simplifying assumptions to reduce a 3D problem into a 2D
one.

7.3.5.2.1 Plane Strain

82 For problems involving a long body in the z direction with no variation in load or
geometry, then εzz = γyz = γxz = τxz = τyz = 0. Thus, replacing into Eq. 5.2 we obtain

σxx
σyy
σzz
τxy

 =
E

(1 + ν)(1− 2ν)


(1− ν) ν 0

ν (1− ν) 0
ν ν 0
0 0 1−2ν

2




εxx
εyy
γxy

 (7.75)
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7.3.5.2.2 Axisymmetry

83 In solids of revolution, we can use a polar coordinate sytem and

εrr =
∂u

∂r
(7.76-a)

εθθ =
u

r
(7.76-b)

εzz =
∂w

∂z
(7.76-c)

εrz =
∂u

∂z
+

∂w

∂r
(7.76-d)

84 The constitutive relation is again analogous to 3D/plane strain
σrr
σzz
σθθ
τrz

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
ν ν 1− ν 0
0 0 0 1−2ν

2




εrr
εzz
εθθ
γrz

 (7.77)

7.3.5.2.3 Plane Stress

85 If the longitudinal dimension in z direction is much smaller than in the x and y
directions, then τyz = τxz = σzz = γxz = γyz = 0 throughout the thickness. Again,
substituting into Eq. 5.2 we obtain:

σxx
σyy
τxy

 =
1

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2




εxx
εyy
γxy

 (7.78-a)

εzz = − 1

1− ν
ν(εxx + εyy) (7.78-b)

7.4 Linear Thermoelasticity

86 If thermal effects are accounted for, the components of the linear strain tensor Eij may
be considered as the sum of

Eij = E
(T )
ij + E

(Θ)
ij (7.79)

where E
(T )
ij is the contribution from the stress field, and E

(Θ)
ij the contribution from the

temperature field.

87 When a body is subjected to a temperature change Θ−Θ0 with respect to the reference
state temperature, the strain componenet of an elementary volume of an unconstrained
isotropic body are given by

E
(Θ)
ij = α(Θ−Θ0)δij (7.80)
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where α is the linear coefficient of thermal expansion.

88 Inserting the preceding two equation into Hooke’s law (Eq. 7.51) yields

Eij =
1

2µ

(
Tij −

λ

3λ+ 2µ
δijTkk

)
+ α(Θ−Θ0)δij (7.81)

which is known as Duhamel-Neumann relations.

89 If we invert this equation, we obtain the thermoelastic constitutive equation:

Tij = λδijEkk + 2µEij − (3λ+ 2µ)αδij(Θ−Θ0) (7.82)

90 Alternatively, if we were to consider the derivation of the Green-elastic hyperelastic
equations, (Sect. 7.1.5), we required the constants c1 to c6 in Eq. 7.22 to be zero in order
that the stress vanish in the unstrained state. If we accounted for the temperature change
Θ−Θ0 with respect to the reference state temperature, we would have ck = −βk(Θ−Θ0)
for k = 1 to 6 and would have to add like terms to Eq. 7.22, leading to

Tij = −βij(Θ−Θ0) + cijrsErs (7.83)

for linear theory, we suppose that βij is independent from the strain and cijrs independent
of temperature change with respect to the natural state. Finally, for isotropic cases we
obtain

Tij = λEkkδij + 2µEij − βij(Θ−Θ0)δij (7.84)

which is identical to Eq. 7.82 with β = Eα
1−2ν . Hence

TΘij =
Eα

1− 2ν
(7.85)

91 In terms of deviatoric stresses and strains we have

T ′
ij = 2µE ′

ij and E ′
ij =

T ′
ij

2µ
(7.86)

and in terms of volumetric stress/strain:

p = −Ke+ β(Θ−Θ0) and e =
p

K
+ 3α(Θ−Θ0) (7.87)

7.5 Fourrier Law

92 Consider a solid through which there is a flow q of heat (or some other quantity such
as mass, chemical, etc...)

93 The rate of transfer per unit area is q
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94 The direction of flow is in the direction of maximum “potential” (temperature in this
case, but could be, piezometric head, or ion concentration) decreases (Fourrier, Darcy,
Fick...).

q =


qx
qy
qz

 = −D


∂φ
∂x
∂φ
∂y
∂φ
∂z

 = −D∇φ (7.88)

D is a three by three (symmetric) constitutive/conductivity matrix
The conductivity can be either

Isotropic

D = k

 1 0 0
0 1 0
0 0 1

 (7.89)

Anisotropic

D =

 kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

 (7.90)

Orthotropic

D =

 kxx 0 0
0 kyy 0
0 0 kzz

 (7.91)

Note that for flow through porous media, Darcy’s equation is only valid for laminar flow.

7.6 Updated Balance of Equations and Unknowns

95 In light of the new equations introduced in this chapter, it would be appropriate to
revisit our balance of equations and unknowns.

Coupled Uncoupled
dρ
dt

+ ρ ∂vi
∂xi

= 0 Continuity Equation 1 1
∂Tij
∂xj

+ ρbi = ρdvi
dt

Equation of motion 3 3

ρdu
dt

= TijDij + ρr − ∂qj
∂xj

Energy equation 1

T = λIE + 2µE Hooke’s Law 6 6
q = −D∇φ Heat Equation (Fourrier) 3
Θ = Θ(s,ν); τj = τj(s,ν) Equations of state 2

Total number of equations 16 10

and we repeat our list of unknowns
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Coupled Uncoupled
Density ρ 1 1
Velocity (or displacement) vi (ui) 3 3
Stress components Tij 6 6
Heat flux components qi 3 -
Specific internal energy u 1 -
Entropy density s 1 -
Absolute temperature Θ 1 -
Total number of unknowns 16 10

and in addition the Clausius-Duhem inequality ds
dt
≥ r
Θ
− 1

ρ
div q

Θ
which governs entropy

production must hold.

96 Hence we now have as many equations as unknowns and are (almost) ready to pose
and solve problems in continuum mechanics.
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Chapter 8

INTERMEZZO

In light of the lengthy and rigorous derivation of the fundamental equations of Continuum
Mechanics in the preceding chapter, the reader may be at a loss as to what are the most
important ones to remember.

Hence, since the complexity of some of the derivation may have eclipsed the final
results, this handout seeks to summarize the most fundamental relations which you should
always remember.

13 σ
21

σ
23

σ
22

σ
31

1

σ
33

σ
32

X 2

X1

V1

X3

X 2

(Components of a vector are scalars)

V

V

V2

X

3

(Components of a tensor of order 2 are vectors)

X3

11σ

σ
12

σ

Stresses as components of a traction vector

t

t

t 1

2

3

Stress Vector/Tensor ti = Tijnj (8.1-a)

Strain Tensor E∗
ij =

1

2

∂ui
∂xj

+
∂uj
∂xi

− ∂uk
∂xi

∂uk
∂xj︸ ︷︷ ︸

 (8.1-b)

=

 ε11
1
2
γ12

1
2
γ13

1
2
γ12 ε22

1
2
γ23

1
2
γ13

1
2
γ23 ε33

 (8.1-c)

Engineering Strain γ23 ≈ sin γ23 = sin(π/2− θ) = cos θ = 2E23 (8.1-d)

Equilibrium
∂Tij
∂xj

+ ρbi = ρ
dvi
dt

(8.1-e)



Draft8–2 INTERMEZZO

Boundary Conditions Γ = Γu + Γt (8.1-f)

Energy Potential Tij =
∂W

∂Eij

(8.1-g)

Hooke’s Law Tij = λδijEkk + 2µEij (8.1-h)

εxx
εyy
εzz
γxy
γyz
γxz


=



1
E

− ν
E

− ν
E

0 0 0
− ν
E

1
E

− ν
E

0 0 0
− ν
E

− ν
E

1
E

0 0 0
0 0 0 1

G
0 0

0 0 0 0 1
G

0
0 0 0 0 0 1

G





σxx
σyy
σzz
τxy
τyz
τxz


(8.1-i)

Plane Stress σzz = 0; εzz �= 0 (8.1-j)

Plane Strain εzz = 0; σzz �= 0 (8.1-k)
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Chapter 9

BOUNDARY VALUE PROBLEMS
in ELASTICITY

9.1 Preliminary Considerations

20 All problems in elasticity require three basic components:

3 Equations of Motion (Equilibrium): i.e. Equations relating the applied tractions
and body forces to the stresses (3)

∂Tij
∂Xj

+ ρbi = ρ
∂2ui
∂t2

(9.1)

6 Stress-Strain relations: (Hooke’s Law)

T = λIE + 2µE (9.2)

6 Geometric (kinematic) equations: i.e. Equations of geometry of deformation re-
lating displacement to strain (6)

E∗ =
1

2
(u∇x + ∇xu) (9.3)

21 Those 15 equations are written in terms of 15 unknowns: 3 displacement ui, 6 stress
components Tij , and 6 strain components Eij .

22 In addition to these equations which describe what is happening inside the body, we
must describe what is happening on the surface or boundary of the body. These extra
conditions are called boundary conditions.

9.2 Boundary Conditions

23 In describing the boundary conditions (B.C.), we must note that:

1. Either we know the displacement but not the traction, or we know the traction and
not the corresponding displacement. We can never know both a priori.
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2. Not all boundary conditions specifications are acceptable. For example we can not
apply tractions to the entire surface of the body. Unless those tractions are specially
prescribed, they may not necessarily satisfy equilibrium.

24 Properly specified boundary conditions result inwell-posed boundary value problems,
while improperly specified boundary conditions will result in ill-posed boundary value
problem. Only the former can be solved.

25 Thus we have two types of boundary conditions in terms of known quantitites, Fig.
9.1:

Ω

Γ

Τ

u

t

Figure 9.1: Boundary Conditions in Elasticity Problems

Displacement boundary conditions along Γu with the three components of ui pre-
scribed on the boundary. The displacement is decomposed into its cartesian (or
curvilinear) components, i.e. ux, uy

Traction boundary conditions along Γt with the three traction components ti =
njTij prescribed at a boundary where the unit normal is n. The traction is de-
composed into its normal and shear(s) components, i.e tn, ts.

Mixed boundary conditions where displacement boundary conditions are prescribed
on a part of the bounding surface, while traction boundary conditions are prescribed
on the remainder.

We note that at some points, traction may be specified in one direction, and displacement
at another. Displacement and tractions can never be specified at the same point in the
same direction.

26 Various terms have been associated with those boundary conditions in the litterature,
those are suumarized in Table 9.1.

27 Often time we take advantage of symmetry not only to simplify the problem, but also
to properly define the appropriate boundary conditions, Fig. 9.2.
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u, Γu t, Γt
Dirichlet Neuman
Field Variable Derivative(s) of Field Variable
Essential Non-essential
Forced Natural
Geometric Static

Table 9.1: Boundary Conditions in Elasticity

x

y ?

A B

CD

E

σ

Note: Unknown tractions=Reactions

t nyu
uΓ

xu

CD
BC
AB ? 0 ?

DE
EA

t s

Γt

0
?

σ
?
?

?
?
0

? ?

0
0 0

0
0 0

Figure 9.2: Boundary Conditions in Elasticity Problems
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9.3 Boundary Value Problem Formulation

28 Hence, the boundary value formulation is suumarized by

∂Tij
∂Xj

+ ρbi = ρ
∂2ui
∂t2

in Ω (9.4)

E∗ =
1

2
(u∇x + ∇xu) (9.5)

T = λIE + 2µE in Ω (9.6)

u = u in Γu (9.7)

t = t in Γt (9.8)

and is illustrated by Fig. 9.3. This is now a well posed problem.

Natural B.C.

ti : Γt

Stresses

Tij

Equilibrium

∂Tij

∂xj
+ ρbi = ρ dvi

dt

Body Forces

bi

Constitutive Rel.

T = λIE + 2µE

Strain

Eij

Kinematics

E∗ = 1
2
(urx +rxu)

Displacements

ui

Essential B.C.

ui : Γu

✻

❄

❄

❄

❄

❄

✲ ✛

Figure 9.3: Fundamental Equations in Solid Mechanics

9.4 Compacted Forms

29 Solving a boundary value problem with 15 unknowns through 15 equations is a formidable
task. Hence, there are numerous methods to reformulate the problem in terms of fewer
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unknows.

9.4.1 Navier-Cauchy Equations

30 One such approach is to substitute the displacement-strain relation into Hooke’s law
(resulting in stresses in terms of the gradient of the displacement), and the resulting
equation into the equation of motion to obtain three second-order partial differential
equations for the three displacement components known as Navier’s Equation

(λ+ µ)
∂2uk

∂Xi∂Xk

+ µ
∂2ui

∂Xk∂Xk

+ ρbi = ρ
∂2ui
∂t2

(9.9)

or

(λ+ µ)∇(∇·u) + µ∇2u+ ρb = ρ
∂2u

∂t2
(9.10)

(9.11)

9.4.2 Beltrami-Mitchell Equations

31 Whereas Navier-Cauchy equation was expressed in terms of the gradient of the dis-
placement, we can follow a similar approach and write a single equation in term of the
gradient of the tractions.

∇2Tij +
1

1 + ν
Tpp,ij = − ν

1− ν
δij∇·(ρb)− ρ(bi,j + bj,i) (9.12)

or

Tij,pp +
1

1 + ν
Tpp,ij = − ν

1− ν
δijρbp,p − ρ(bi,j + bj,i) (9.13)

9.4.3 Ellipticity of Elasticity Problems

9.5 Strain Energy and Extenal Work

32 For the isotropic Hooke’s law, we saw that there always exist a strain energy function
W which is positive-definite, homogeneous quadratic function of the strains such that,
Eq. 7.20

Tij =
∂W

∂Eij
(9.14)

hence it follows that

W =
1

2
TijEij (9.15)

33 The external work done by a body in equilibrium under body forces bi and surface

traction ti is equal to
∫
Ω
ρbiuidΩ +

∫
Γ
tiuidΓ. Substituting ti = Tijnj and applying

Gauss theorem, the second term becomes∫
Γ
TijnjuidΓ =

∫
Ω
(Tijui),jdΩ =

∫
Ω
(Tij,jui + Tijui,j)dΩ (9.16)
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but Tijui,j = Tij(Eij + Ωij) = TijEij and from equilibrium Tij,j = −ρbi, thus∫
Ω
ρbiuidΩ+

∫
Γ
tiuidΓ =

∫
Ω
ρbiuidΩ+

∫
Ω
(TijEij − ρbiui)dΩ (9.17)

or ∫
Ω
ρbiuidΩ +

∫
Γ
tiuidΓ︸ ︷︷ ︸

External Work

= 2
∫
Ω

TijEij

2
dΩ︸ ︷︷ ︸

Internal Strain Energy

(9.18)

that is For an elastic system, the total strain energy is one half the work done by the
external forces acting through their displacements ui.

9.6 Uniqueness of the Elastostatic Stress and Strain Field

34 Because the equations of linear elasticity are linear equations, the principles of super-
position may be used to obtain additional solutions from those established. Hence, given

two sets of solution T
(1)
ij , u

(1)
i , and T

(2)
ij , u

(2)
i , then Tij = T

(2)
ij − T

(1)
ij , and ui = u

(2)
i − u

(1)
i

with bi = b
(2)
i − b

(1)
i = 0 must also be a solution.

35 Hence for this “difference” solution, Eq. 9.18 would yield
∫
Γ
tiuidΓ = 2

∫
Ω
u∗dΩ but

the left hand side is zero because ti = t
(2)
i − t

(1)
i = 0 on Γu, and ui = u

(2)
i − u

(1)
i = 0 on

Γt, thus
∫
Ω
u∗dΩ = 0.

36 But u∗ is positive-definite and continuous, thus the integral can vanish if and only if
u∗ = 0 everywhere, and this is only possible if Eij = 0 everywhere so that

E
(2)
ij = E

(1)
ij ⇒ T

(2)
ij = T ij(1) (9.19)

hence, there can not be two different stress and strain fields corresponding to the same
externally imposed body forces and boundary conditions1 and satisfying the linearized
elastostatic Eqs 9.1, 9.14 and 9.3.

9.7 Saint Venant’s Principle

37 This famous principle of Saint Venant was enunciated in 1855 and is of great im-
portance in applied elasticity where it is often invoked to justify certain “simplified”
solutions to complex problem.

In elastostatics, if the boundary tractions on a part Γ1 of the boundary Γ are
replaced by a statically equivalent traction distribution, the effects on the stress
distribution in the body are negligible at points whose distance from Γ1 is large
compared to the maximum distance between points of Γ1.

1This theorem is attributed to Kirchoff (1858).
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38 For instance the analysis of the problem in Fig. 9.4 can be greatly simplified if the
tractions on Γ1 are replaced by a concentrated statically equivalent force.

F=tdx

t
dx

Figure 9.4: St-Venant’s Principle

9.8 Cylindrical Coordinates

39 So far all equations have been written in either vector, indicial, or engineering notation.
The last two were so far restricted to an othonormal cartesian coordinate system.

40 We now rewrite some of the fundamental relations in cylindrical coordinate system,
Fig. 9.5, as this would enable us to analytically solve some simple problems of great
practical usefulness (torsion, pressurized cylinders, ...). This is most often achieved by
reducing the dimensionality of the problem from 3 to 2 or even to 1.

z

θ r

Figure 9.5: Cylindrical Coordinates
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9.8.1 Strains

41 With reference to Fig. 9.6, we consider the displacement of point P to P ∗. the

u

u

u

*

x

y

r

θu

θ

r

x

y

P

P

θ
θ

Figure 9.6: Polar Strains

displacements can be expressed in cartesian coordinates as ux, uy, or in polar coordinates
as ur, uθ. Hence,

ux = ur cos θ − uθ sin θ (9.20-a)

uy = ur sin θ + uθ cos θ (9.20-b)

substituting into the strain definition for εxx (for small displacements) we obtain

εxx =
∂ux
∂x

=
∂ux
∂θ

∂θ

∂x
+

∂ux
∂r

∂r

∂x
(9.21-a)

∂ux
∂θ

=
∂ur
∂θ

cos θ − ur sin θ −
∂uθ
∂θ

sin θ − uθ cos θ (9.21-b)

∂ux
∂r

=
∂ur
∂r

cos θ − ∂uθ
∂r

sin θ (9.21-c)

∂θ

∂x
= −sin θ

r
(9.21-d)

∂r

∂x
= cos θ (9.21-e)

εxx =

(
−∂ur

∂θ
cos θ + ur sin θ +

∂uθ
∂θ

sin θ + uθ cos θ

)
sin θ

r

+

(
∂ur
∂r

cos θ − ∂uθ
∂r

sin θ

)
cos θ (9.21-f)

Noting that as θ → 0, εxx → εrr, sin θ → 0, and cos θ → 1, we obtain

εrr = εxx|θ→0 =
∂ur
∂r

(9.22)

42 Similarly, if θ → π/2, εxx → εθθ, sin θ → 1, and cos θ → 0. Hence,

εθθ = εxx|θ→π/2 =
1

r
∂uθ∂θ +

ur
r

(9.23)
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finally, we may express εxy as a function of ur, uθ and θ and noting that εxy → εrθ as
θ → 0, we obtain

εrθ =
1

2

[
εxy|θ→0 =

∂uθ
∂r

− uθ
r

+
1

r

∂ur
∂θ

]
(9.24)

43 In summary, and with the addition of the z components (not explicitely derived), we
obtain

εrr =
∂ur
∂r

(9.25)

εθθ =
1

r

∂uθ
∂θ

+
ur
r

(9.26)

εzz =
∂uz
∂z

(9.27)

εrθ =
1

2

[
1

r

∂ur
∂θ

+
∂uθ
∂r

− utheta

r

]
(9.28)

εθz =
1

2

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
(9.29)

εrz =
1

2

[
∂uz
∂r

+
∂ur
∂z

]
(9.30)

9.8.2 Equilibrium

44 Whereas the equilibrium equation as given In Eq. 6.24 was obtained from the linear
momentum principle (without any reference to the notion of equilibrium of forces), its
derivation (as mentioned) could have been obtained by equilibrium of forces considera-
tions. This is the approach which we will follow for the polar coordinate system with
respect to Fig. 9.7.

θ
θ

d

θ
d

d
r

d
r

θθ rr

δδ

δ
θ

T

r
+

r

r+
dr

θ

θd
r

f
f

r
θ δδ

θ θr
+

+ δδ
rr

r

θr

T
rr

rθ

θr

T
T

T
T

T

T
T

T

+ δ
θθ

θθ
T

Figure 9.7: Stresses in Polar Coordinates
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45 Summation of forces parallel to the radial direction through the center of the element
with unit thickness in the z direction yields:(

Trr +
∂Trr
∂r

dr

)
(r + dr)dθ − Trr(rdθ) (9.31-a)

−
(
Tθθ +

∂Tθθ
∂θ

+ Tθθ

)
dr sin

dθ

2

+

(
Tθr +

∂Tθr
∂θ

dθ − Tθr

)
dr cos

dθ

2
+ frrdrdθ = 0 (9.31-b)

we approximate sin(dθ/2) by dθ/2 and cos(dθ/2) by unity, divide through by rdrdθ,

1

r
Trr +

∂Trr
∂r

(
1 +

dr

r

)
− Tθθ

r
− ∂Tθθ

∂θ

dθ

dr
+

1

r

∂Tθr
∂θ

+ fr = 0 (9.32)

46 Similarly we can take the summation of forces in the θ direction. In both cases if we
were to drop the dr/r and dθ/r in the limit, we obtain

∂Trr
∂r

+
1

r

∂Tθr
∂θ

+
1

r
(Trr − Tθθ) + fr = 0 (9.33)

∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+
1

r
(Trθ − Tθr) + fθ = 0 (9.34)

47 It is often necessary to express cartesian stresses in terms of polar stresses and vice
versa. This can be done through the following relationships[

Txx Txy
Txy Tyy

]
=

[
cos θ − sin θ
sin θ cos θ

] [
Trr Trθ
Trθ Tθθ

] [
cos θ − sin θ
sin θ cos θ

]T
(9.35)

yielding

Txx = Trr cos
2 θ + Tθθ sin

2 θ − Trθ sin 2θ (9.36-a)

Tyy = Trr sin
2 θ + Tθθ cos

2 θ + Trθ sin 2θ (9.36-b)

Txy = (Trr − Tθθ) sin θ cos θ + Trθ(cos
2 θ − sin2 θ) (9.36-c)

(recalling that sin2 θ = 1/2 sin 2θ, and cos2 θ = 1/2(1 + cos 2θ)).

9.8.3 Stress-Strain Relations

48 In orthogonal curvilinear coordinates, the physical components of a tensor at a point
are merely the Cartesian components in a local coordinate system at the point with its
axes tangent to the coordinate curves. Hence,

Trr = λe+ 2µεrr (9.37)

Tθθ = λe+ 2µεθθ (9.38)

Trθ = 2µεrθ (9.39)

Tzz = ν(Trr + Tθθ) (9.40)
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with e = εrr + εθθ. alternatively,

Err =
1

E

[
(1− ν2)Trr − ν(1 + ν)Tθθ

]
(9.41)

Eθθ =
1

E

[
(1− ν2)Tθθ − ν(1 + ν)Trr

]
(9.42)

Erθ =
1 + ν

E
Trθ (9.43)

Erz = Eθz = Ezz = 0 (9.44)

9.8.3.1 Plane Strain

49 For Plane strain problems, from Eq. 7.75:
σrr
σθθ
σzz
τrθ

 =
E

(1 + ν)(1− 2ν)


(1− ν) ν 0

ν (1− ν) 0
ν ν 0
0 0 1−2ν

2




εrr
εθθ
γrθ

 (9.45)

and εzz = γrz = γθz = τrz = τθz = 0.

50 Inverting,


εrr
εθθ
γrθ

 =
1

E


1− ν2 −ν(1 + ν) 0

−ν(1 + ν) 1− ν2 0
ν ν 0
0 0 2(1 + ν




σrr
σθθ
σzz
τrθ

 (9.46)

9.8.3.2 Plane Stress

51 For plane stress problems, from Eq. 7.78-a
σrr
σθθ
τrθ

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2




εrr
εθθ
γrθ

 (9.47-a)

εzz = − 1

1− ν
ν(εrr + εθθ) (9.47-b)

and τrz = τθz = σzz = γrz = γθz = 0

52 Inverting 
εrr
εθθ
γrθ

 =
1

E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)




σrr
σθθ
τrθ

 (9.48-a)
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Chapter 10

SOME ELASTICITY PROBLEMS

20 Practical solutions of two-dimensional boundary-value problem in simply connected
regions can be accomplished by numerous techniques. Those include: a) Finite-difference
approximation of the differential equation, b) Complex function method of Muskhelisvili
(most useful in problems with stress concentration), c) Variational methods (which will be
covered in subsequent chapters), d) Semi-inverse methods, and e) Airy stress functions.

21 Only the last two methods will be discussed in this chapter.

10.1 Semi-Inverse Method

22 Often a solution to an elasticity problem may be obtained without seeking simulate-
neous solutions to the equations of motion, Hooke’s Law and boundary conditions. One
may attempt to seek solutions by making certain assumptions or guesses about the com-
ponents of strain stress or displacement while leaving enough freedom in these assump-
tions so that the equations of elasticity be satisfied.

23 If the assumptions allow us to satisfy the elasticity equations, then by the uniqueness
theorem, we have succeeded in obtaining the solution to the problem.

24 This method was employed by Saint-Venant in his treatment of the torsion problem,
hence it is often referred to as the Saint-Venant semi-inverse method.

10.1.1 Example: Torsion of a Circular Cylinder

25 Let us consider the elastic deformation of a cylindrical bar with circular cross section
of radius a and length L twisted by equal and opposite end moments M1, Fig. 10.1.

26 From symmetry, it is reasonable to assume that the motion of each cross-sectional
plane is a rigid body rotation about the x1 axis. Hence, for a small rotation angle θ, the
displacement field will be given by:

u = (θe1)×r = (θe1)×(x1e1 + x2e2 + x3e3) = θ(x2e3 − x3e2) (10.1)

or
u1 = 0; u2 = −θx3; u3 = θx2 (10.2)
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n

X

X

X L

M

M 1

2

3

T

T

aθ

n

Figure 10.1: Torsion of a Circular Bar

where θ = θ(x1).

27 The corresponding strains are given by

E11 = E22 = E33 = 0 (10.3-a)

E12 = −1

2
x3

∂θ

∂x1
(10.3-b)

E13 =
1

2
x2

∂θ

∂x1
(10.3-c)

28 The non zero stress components are obtained from Hooke’s law

T12 = −µx3
∂θ

∂x1
(10.4-a)

T13 = µx2
∂θ

∂x1
(10.4-b)

29 We need to check that this state of stress satisfies equilibrium ∂Tij/∂xj = 0. The first
one j = 1 is identically satisfied, whereas the other two yield

−µx3
d2θ

dx21
= 0 (10.5-a)

µx2
d2θ

dx21
= 0 (10.5-b)

thus,
dθ

dx1
≡ θ′ = constant (10.6)

Physically, this means that equilibrium is only satisfied if the increment in angular rota-
tion (twist per unit length) is a constant.
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30 We next determine the corresponding surface tractions. On the lateral surface we have
a unit normal vector n = 1

a
(x2e2 + x3e3), therefore the surface traction on the lateral

surface is given by

{t} = [T]{n} =
1

a

 0 T12 T13
T21 0 0
T31 0 0




0
x2
x3

 =
1

a


x2T12
0
0

 (10.7)

31 Substituting,

t =
µ

a
(−x2x3θ′ + x2x3θ

′)e1 = 0 (10.8)

which is in agreement with the fact that the bar is twisted by end moments only, the
lateral surface is traction free.

32 On the face x1 = L, we have a unit normal n = e1 and a surface traction

t = Te1 = T21e2 + T31e3 (10.9)

this distribution of surface traction on the end face gives rise to the following resultants

R1 =
∫
T11dA = 0 (10.10-a)

R2 =
∫
T21dA = µθ′

∫
x3dA = 0 (10.10-b)

R3 =
∫
T31dA = µθ′

∫
x2dA = 0 (10.10-c)

M1 =
∫
(x2T31 − x3T21)dA = µθ′

∫
(x22 + x23)dA = µθ′J (10.10-d)

M2 = M3 = 0 (10.10-e)

We note that
∫
(x22 + x33)

2dA is the polar moment of inertia of the cross section and
is equal to J = πa4/2, and we also note that

∫
x2dA =

∫
x3dA = 0 because the area is

symmetric with respect to the axes.

33 From the last equation we note that

θ′ =
M

µJ
(10.11)

which implies that the shear modulus µ can be determined froma simple torsion experi-
ment.

34 Finally, in terms of the twisting couple M , the stress tensor becomes

[T] =

 0 −Mx3

J
Mx2

J

−Mx3

J
0 0

Mx2

J
0 0

 (10.12)

10.2 Airy Stress Functions

10.2.1 Cartesian Coordinates; Plane Strain

35 If the deformation of a cylindrical body is such that there is no axial components of
the displacement and that the other components do not depend on the axial coordinate,
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then the body is said to be in a state of plane strain. If e3 is the direction corresponding
to the cylindrical axis, then we have

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = 0 (10.13)

and the strain components corresponding to those displacements are

E11 =
∂u1
∂x1

(10.14-a)

E22 =
∂u2
∂x2

(10.14-b)

E12 =
1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
(10.14-c)

E13 = E23 = E33 = 0 (10.14-d)

and the non-zero stress components are T11, T12, T22, T33 where

T33 = ν(T11 + T22) (10.15)

36 Considering a static stress field with no body forces, the equilibrium equations reduce
to:

∂T11
∂x1

+
∂T12
∂x2

= 0 (10.16-a)

∂T12
∂x1

+
∂T22
∂x2

= 0 (10.16-b)

∂T33
∂x1

= 0 (10.16-c)

we note that since T33 = T33(x1, x2), the last equation is always satisfied.

37 Hence, it can be easily verified that for any arbitrary scalar variable Φ, if we compute
the stress components from

T11 =
∂2Φ

∂x22
(10.17)

T22 =
∂2Φ

∂x21
(10.18)

T12 = − ∂2Φ

∂x1∂x2
(10.19)

then the first two equations of equilibrium are automatically satisfied. This function Φ
is called Airy stress function.

38 However, if stress components determined this way are statically admissible (i.e.
they satisfy equilibrium), they are not necessarily kinematically admissible (i.e. sat-
isfy compatibility equations).
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39 To ensure compatibility of the strain components, we obtain the strains components
in terms of Φ from Hooke’s law, Eq. 5.1 and Eq. 10.15.

E11 =
1

E

[
(1− ν2)T11 − ν(1 + ν)T22

]
=

1

E

[
(1− ν2)

∂2Φ

∂x22
− ν(1 + ν)

∂2Φ

∂x21

]
(10.20-a)

E22 =
1

E

[
(1− ν2)T22 − ν(1 + ν)T11

]
=

1

E

[
(1− ν2)

∂2Φ

∂x21
− ν(1 + ν)

∂2Φ

∂x22

]
(10.20-b)

E12 =
1

E
(1 + ν)T12 = − 1

E
(1 + ν)

∂2Φ

∂x1∂x2
(10.20-c)

40 For plane strain problems, the only compatibility equation, 4.159, that is not auto-
matically satisfied is

∂2E11
∂x22

+
∂2E22
∂x21

= 2
∂2E12
∂x1∂x2

(10.21)

thus we obtain the following equation governing the scalar function Φ

(1− ν)

(
∂4Φ

∂x41
+ 2

∂4Φ

∂x21∂x
2
2

+
∂4Φ

∂x41

)
= 0 (10.22)

or
∂4Φ

∂x41
+ 2

∂4Φ

∂x21∂x
2
2

+
∂4Φ

∂x41
= 0 or ∇4Φ = 0 (10.23)

Hence, any function which satisfies the preceding equation will satisfy both equilibrium
and kinematic and is thus an acceptable elasticity solution.

41 We can also obtain from the Hooke’s law, the compatibility equation 10.21, and the
equilibrium equations the following(

∂2

∂x21
+

∂2

∂x22

)
(T11 + T22) = 0 or ∇2(T11 + T22) = 0 (10.24)

42 Any polynomial of degree three or less in x and y satisfies the biharmonic equation
(Eq. 10.23). A systematic way of selecting coefficients begins with

Φ =
∞∑
m=0

∞∑
n=0

Cmnx
myn (10.25)

43 The stresses will be given by

Txx =
∞∑
m=0

∞∑
n=2

n(n− 1)Cmnx
myn−2 (10.26-a)

Tyy =
∞∑
m=2

∞∑
n=0

m(m− 1)Cmnx
m−1yn (10.26-b)

Txy = −
∞∑
m=1

∞∑
n=1

mnCmnx
m−1yn−1 (10.26-c)
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44 Substituting into Eq. 10.23 and regrouping we obtain

∞∑
m=2

∞∑
n=2

[(m+2)(m+1)m(m−1)Cm+2,n−2+2m(m−1)n(n−1)Cmn+(n+2)(n+1)n(n−1)Cm−2,n+2]xm−2yn−2 =

(10.27)
but since the equation must be identically satisfied for all x and y, the term in bracket
must be equal to zero.

(m+2)(m+1)m(m−1)Cm+2,n−2+2m(m−1)n(n−1)Cmn+(n+2)(n+1)n(n−1)Cm−2,n+2 = 0
(10.28)

Hence, the recursion relation establishes relationships among groups of three alternate
coefficients which can be selected from

0 0 C02 C03 C04 C05 C06 · · ·
0 C11 C12 C13 C14 C15 · · ·
C20 C21 C22 C23 C24 · · ·
C30 C31 C32 C33 · · ·
C40 C41 C42 · · ·
C50 C51 · · ·
C60 · · ·


(10.29)

For example if we consider m = n = 2, then

(4)(3)(2)(1)C40 + (2)(2)(1)(2)(1)C22 + (4)(3)(2)(1)C04 = 0 (10.30)

or 3C40 + C22 + 3C04 = 0

10.2.1.1 Example: Cantilever Beam

45 We consider the homogeneous fourth-degree polynomial

Φ4 = C40x
4 + C31x

3y + C22x
2y2 + C13xy

3 + C04y
4 (10.31)

with 3C40 + C22 + 3C04 = 0,

46 The stresses are obtained from Eq. 10.26-a-10.26-c

Txx = 2C22x
2 + 6C13xy + 12C04y

2 (10.32-a)

Tyy = 12C40x
2 + 6C31xy + 2C22y

2 (10.32-b)

Txy = −3C31x
2 − 4C22xy − 3C13y

2 (10.32-c)

These can be used for the end-loaded cantilever beam with width b along the z axis,
depth 2a and length L.

47 If all coefficients except C13 are taken to be zero, then

Txx = 6C13xy (10.33-a)

Tyy = 0 (10.33-b)

Txy = −3C13y
2 (10.33-c)
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Draft10.2 Airy Stress Functions 10–7

48 This will give a parabolic shear traction on the loaded end (correct), but also a uniform
shear traction Txy = −3C13a

2 on top and bottom. These can be removed by superposing
uniform shear stress Txy = +3C13a

2 corresponding to Φ2 = −3C13a
2xy. Thus

Txy = 3C13(a
2 − y2) (10.34)

note that C20 = C02 = 0, and C11 = −3C13a
2.

49 The constant C13 is determined by requiring that

P = b
∫ a

−a
−Txydy = −3bC13

∫ a

−a
(a2 − y2)dy (10.35)

hence

C13 = − P

4a3b
(10.36)

and the solution is

Φ =
3P

4ab
xy − P

4a3b
xy3 (10.37-a)

Txx = − 3P

2a3b
xy (10.37-b)

Txy = − 3P

4a3b
(a2 − y2) (10.37-c)

Tyy = 0 (10.37-d)

50 We observe that the second moment of area for the rectangular cross section is I =
b(2a)3/12 = 2a3b/3, hence this solution agrees with the elementary beam theory solution

Φ = C11xy + C13xy
3 =

3P

4ab
xy − P

4a3b
xy3 (10.38-a)

Txx = −P

I
xy = −My

I
= −M

S
(10.38-b)

Txy = − P

2I
(a2 − y2) (10.38-c)

Tyy = 0 (10.38-d)

10.2.2 Polar Coordinates

10.2.2.1 Plane Strain Formulation

51 In polar coordinates, the strain components in plane strain are, Eq. 9.46

Err =
1

E

[
(1− ν2)Trr − ν(1 + ν)Tθθ

]
(10.39-a)

Eθθ =
1

E

[
(1− ν2)Tθθ − ν(1 + ν)Trr

]
(10.39-b)
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Erθ =
1 + ν

E
Trθ (10.39-c)

Erz = Eθz = Ezz = 0 (10.39-d)

and the equations of equilibrium are

1

r

∂Trr
∂r

+
1

r

∂Tθr
∂θ

− Tθθ
r

= 0 (10.40-a)

1

r2
∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

= 0 (10.40-b)

52 Again, it can be easily verified that the equations of equilibrium are identically satisfied
if

Trr =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
(10.41)

Tθθ =
∂2Φ

∂r2
(10.42)

Trθ = − ∂

∂r

(
1

r

∂Φ

∂θ

)
(10.43)

53 In order to satisfy the compatibility conditions, the cartesian stress components must
also satisfy Eq. 10.24. To derive the equivalent expression in cylindrical coordinates, we
note that T11 + T22 is the first scalar invariant of the stress tensor, therefore

T11 + T22 = Trr + Tθθ =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
+

∂2Φ

∂r2
(10.44)

54 We also note that in cylindrical coordinates, the Laplacian operator takes the following
form

∇2 = ∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
(10.45)

55 Thus, the function Φ must satisfy the biharmonic equation(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
= 0 or ∇4 = 0 (10.46)

10.2.2.2 Axially Symmetric Case

56 If Φ is a function of r only, we have

Trr =
1

r

dΦ

dr
; Tθθ =

d2Φ

dr2
; Trθ = 0 (10.47)

and
d4Φ

dr4
+

2

r

d3Φ

dr3
− 1

r2
d2Φ

dr2
+

1

r3
dΦ

dr
= 0 (10.48)

57 The general solution to this problem; using Mathematica:
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Draft10.2 Airy Stress Functions 10–9

DSolve[phi’’’’[r]+2 phi’’’[r]/r-phi’’[r]/r^2+phi’[r]/r^3==0,phi[r],r]

Φ = A ln r +Br2 ln r + Cr2 +D (10.49)

58 The corresponding stress field is

Trr =
A

r2
+B(1 + 2 ln r) + 2C (10.50)

Tθθ = −A

r2
+B(3 + 2 ln r) + 2C (10.51)

Trθ = 0 (10.52)

and the strain components are (from Sect. 9.8.1)

Err =
∂ur
∂r

=
1

E

[
(1 + ν)A

r2
+ (1− 3ν − 4ν2)B + 2(1− ν − 2ν2)B ln r + 2(1− ν − 2ν2)C

]
(10

Eθθ =
1

r

∂uθ
∂θ

+
ur
r

=
1

E

[
−(1 + ν)A

r2
+ (3− ν − 4ν2)B + 2(1− ν − 2ν2)B ln r + 2(1− ν − 2ν2)C

]
(10

Erθ = 0 (10

59 Finally, the displacement components can be obtained by integrating the above equa-
tions

ur =
1

E

[
−(1 + ν)A

r
− (1 + ν)Br + 2(1− ν − 2ν2)r ln rB + 2(1− ν − 2ν2)rC

]
(10.56)

uθ =
4rθB

E
(1− ν2) (10.57)

10.2.2.3 Example: Thick-Walled Cylinder

60 If we consider a circular cylinder with internal and external radii a and b respectively,
subjected to internal and external pressures pi and po respectively, Fig. 10.2, then the
boundary conditions for the plane strain problem are

Trr = −pi at r = a (10.58-a)

Trr = −po at r = b (10.58-b)

61 These Boundary conditions can be easily shown to be satisfied by the following stress
field

Trr =
A

r2
+ 2C (10.59-a)

Tθθ = −A

r2
+ 2C (10.59-b)

Trθ = 0 (10.59-c)
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Saint Venant

p

a
bp

i

o

Figure 10.2: Pressurized Thick Tube

These equations are taken from Eq. 10.50, 10.51 and 10.52 with B = 0 and therefore
represent a possible state of stress for the plane strain problem.

62 We note that if we take B �= 0, then uθ = 4rθB
E

(1 − ν2) and this is not acceptable
because if we were to start at θ = 0 and trace a curve around the origin and return to
the same point, than θ = 2π and the displacement would then be different.

63 Applying the boundary condition we find that

Trr = −pi
(b2/r2)− 1

(b2/a2)− 1
− p0

1− (a2/r2)

1− (a2/b2)
(10.60)

Tθθ = pi
(b2/r2) + 1

(b2/a2)− 1
− p0

1 + (a2/r2)

1− (a2/b2)
(10.61)

Trθ = 0 (10.62)

64 We note that if only the internal pressure pi is acting, then Trr is always a compressive
stress, and Tθθ is always positive.

65 If the cylinder is thick, then the strains are given by Eq. 10.53, 10.54 and 10.55. For
a very thin cylinder in the axial direction, then the strains will be given by

Err =
du

dr
=

1

E
(Trr − νTθθ) (10.63-a)

Eθθ =
u

r
=

1

E
(Tθθ − νTrr) (10.63-b)
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Ezz =
dw

dz
=

ν

E
(Trr + Tθθ) (10.63-c)

Erθ =
(1 + ν)

E
Trθ (10.63-d)

66 It should be noted that applying Saint-Venant’s principle the above solution is only
valid away from the ends of the cylinder.

10.2.2.4 Example: Hollow Sphere

67 We consider next a hollow sphere with internal and xternal radii ai and ao respectively,
and subjected to internal and external pressures of pi and po, Fig. 10.3.

ao

i

p
op

a
i

Figure 10.3: Pressurized Hollow Sphere

68 With respect to the spherical ccordinates (r, θ, φ), it is clear due to the spherical
symmetry of the geometry and the loading that each particle of the elastic sphere will
expereince only a radial displacement whose magnitude depends on r only, that is

ur = ur(r), uθ = uφ = 0 (10.64)

10.2.2.5 Example: Stress Concentration due to a Circular Hole in a Plate

69 Analysing the infinite plate under uniform tension with a circular hole of diameter a,
and subjected to a uniform stress σ0, Fig. 10.4.

70 The peculiarity of this problem is that the far-field boundary conditions are better
expressed in cartesian coordinates, whereas the ones around the hole should be written
in polar coordinate system.

71 First we select a stress function which satisfies the biharmonic Equation (Eq. 10.23),
and the far-field boundary conditions. From St Venant principle, away from the hole,
the boundary conditions are given by:

Txx = σ0; Tyy = Txy = 0 (10.65)

Recalling (Eq. 10.19) that Txx = ∂2Φ
∂y2

, this would would suggest a stress function Φ of

the form Φ = σ0y
2. Alternatively, the presence of the circular hole would suggest a polar

representation of Φ. Thus, substituting y = r sin θ would result in Φ = σ0r
2 sin2 θ.
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Figure 10.4: Circular Hole in an Infinite Plate

72 Since sin2 θ = 1
2
(1− cos 2θ), we could simplify the stress function into

Φ = f(r) cos 2θ (10.66)

Substituting this function into the biharmonic equation (Eq. 10.46) yields(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2

)
= 0 (10.67-a)(

d2

dr2
+

1

r

d

dr
− 4

r2

)(
d2f

dr2
+

1

r

df

dr
− 4f

r2

)
= 0 (10.67-b)

73 The general solution of this ordinary linear fourth order differential equation is

f(r) = Ar2 +Br4 + C
1

r2
+D (10.68)

thus the stress function becomes

Φ =
(
Ar2 +Br4 + C

1

r2
+D

)
cos 2θ (10.69)

Using Eq. 10.41-10.43, the stresses are given by

Trr =
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
= −

(
2A+

6C

r4
+

4D

r2

)
cos 2θ (10.70-a)

Tθθ =
∂2Φ

∂r2
=

(
2A+ 12Br2 +

6C

r4

)
cos 2θ (10.70-b)

Trθ = − ∂

∂r

(
1

r

∂Φ

∂θ

)
=

(
2A+ 6Br2 − 6C

r4
− 2D

r2

)
sin 2θ (10.70-c)

74 Next we seek to solve for the four constants of integration by applying the boundary
conditions. We will identify two sets of boundary conditions:

1. Outer boundaries: around an infinitely large circle of radius b inside a plate subjected
to uniform stress σ0, the stresses in polar coordinates are obtained from Eq. 9.35[

Trr Trθ
Trθ Tθθ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
σ0 0
0 0

] [
cos θ − sin θ
sin θ cos θ

]T
(10.71)
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yielding (recalling that sin2 θ = 1/2 sin 2θ, and cos2 θ = 1/2(1 + cos 2θ)).

(Trr)r=b = σ0 cos
2 θ =

1

2
σ0(1 + cos 2θ) (10.72-a)

(Trθ)r=b =
1

2
σ0 sin 2θ (10.72-b)

(Tθθ)r=b =
σ0
2
(1− cos 2θ) (10.72-c)

For reasons which will become apparent later, it is more convenient to decompose
the state of stress given by Eq. 10.72-a and 10.72-b, into state I and II:

(Trr)
I
r=b =

1

2
σ0 (10.73-a)

(Trθ)
I
r=b = 0 (10.73-b)

(Trr)
II
r=b =

1

2
σ0 cos 2θ (10.73-c)

(Trθ)
II
r=b =

1

2
σ0 sin 2θ (10.73-d)

Where state I corresponds to a thick cylinder with external pressure applied on
r = b and of magnitude σ0/2. This problem has already been previously solved.
Hence, only the last two equations will provide us with boundary conditions.

2. Around the hole: the stresses should be equal to zero:

(Trr)r=a = 0 (10.74-a)

(Trθ)r=a = 0 (10.74-b)

75 Upon substitution in Eq. 10.70-a the four boundary conditions (Eq. 10.73-c, 10.73-d,
10.74-a, and 10.74-b) become

−
(
2A+

6C

b4
+

4D

b2

)
=

1

2
σ0 (10.75-a)(

2A+ 6Bb2 − 6C

b4
− 2D

b2

)
=

1

2
σ0 (10.75-b)

−
(
2A+

6C

a4
+

4D

a2

)
= 0 (10.75-c)(

2A+ 6Ba2 − 6C

a4
− 2D

a2

)
= 0 (10.75-d)

76 Solving for the four unknowns, and taking a
b
= 0 (i.e. an infinite plate), we obtain:

A = −σ0
4
; B = 0; C = −a4

4
σ0; D =

a2

2
σ0 (10.76)

77 To this solution, we must superimpose the one of a thick cylinder subjected to a
uniform radial traction σ0/2 on the outer surface, and with b much greater than a. These
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stresses were derived in Eqs. 10.60 and 10.61 yielding for this problem (carefull about
the sign)

Trr =
σ0
2

(
1− a2

r2

)
(10.77-a)

Tθθ =
σ0
2

(
1 +

a2

r2

)
(10.77-b)

Thus, upon substitution into Eq. 10.70-a, we obtain

Trr =
σ0
2

(
1− a2

r2

)
+

(
1 + 3

a4

r4
− 4a2

r2

)
1

2
σ0 cos 2θ (10.78-a)

Tθθ =
σ0
2

(
1 +

a2

r2

)
−

(
1 +

3a4

r4

)
1

2
σ0 cos 2θ (10.78-b)

Trθ = −
(
1− 3a4

r4
+

2a2

r2

)
1

2
σ0 sin 2θ (10.78-c)

78 We observe that as r → ∞, both Trr and Trθ are equal to the values given in Eq.
10.72-a and 10.72-b respectively.

79 Alternatively, at the edge of the hole when r = a we obtain Trr = Trθ = 0 and

(Tθθ)r=a = σ0(1− 2 cos 2θ) (10.79)

which for θ = π
2
and 3π

2
gives a stress concentration factor (SCF) of 3. For θ = 0 and

θ = π, Tθθ = −σ0.
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Chapter 11

THEORETICAL STRENGTH OF
PERFECT CRYSTALS

This chapter (taken from the author’s lecture notes in Fracture Mechanics)

is of primary interest to students in Material Science.

11.1 Introduction

20 In Eq. ?? we showed that around a circular hole in an infinite plate under uniform
traction, we do have a stress concentration factor of 3.

21 Following a similar approach (though with curvilinear coordinates), it can be shown
that if we have an elliptical hole, Fig. ??, we would have

(σββ)
β=0,π
α=α0

= σ0

(
1 + 2

a

b

)
(11.1)

We observe that for a = b, we recover the stress concentration factor of 3 of a circular hole,
and that for a degenerated ellipse, i.e a crack there is an infinite stress. Alternatively,

x

x2b

2a

σ

σ

α = α

ο

ο

2

o

1

Figure 11.1: Elliptical Hole in an Infinite Plate
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Theoretical Strength

Diameter

St
re
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 (
P/

A
)

Figure 11.2: Griffith’s Experiments

the stress can be expressed in terms of ρ, the radius of curvature of the ellipse,

(σββ)
β=0,π
α=α0

= σ0

(
1 + 2

√
a

ρ

)
(11.2)

From this equation, we note that the stress concentration factor is inversely proportional
to the radius of curvature of an opening.

22 This equation, derived by Inglis, shows that if a = b we recover the factor of 3, and
the stress concentration factor increase as the ratio a/b increases. In the limit, as b = 0
we would have a crack resulting in an infinite stress concentration factor, or a stress
singularity.

23 Around 1920, Griffith was exploring the theoretical strength of solids by performing a
series of experiments on glass rods of various diameters.

24 He observed that the tensile strength (σt) of glass decreased with an increase in diam-
eter, and that for a diameter φ ≈ 1

10,000
in., σt = 500, 000 psi; furthermore, by extrapo-

lation to “zero” diameter he obtained a theoretical maximum strength of approximately
1,600,000 psi, and on the other hand for very large diameters the asymptotic values was
around 25,000 psi.

Area A1 < A2 < A3 < A4
Failure Load P1 < P2 < P3 > P4

Failure Strength (P/A) σt1 > σt2 > σt3 > σt4

(11.3)

Furthermore, as the diameter was further reduced, the failure strength asymptotically
approached a limit which will be shown later to be the theoretical strength of glass,
Fig. 11.2.

25 Clearly, one would have expected the failure strength to be constant, yet it was not.
So Griffith was confronted with two questions:

1. What is this apparent theoretical strength, can it be derived?

2. Why is there a size effect for the actual strength?
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Figure 11.3: Uniformly Stressed Layer of Atoms Separated by a0

The answers to those two questions are essential to establish a link between Mechanics
and Materials.

26 In the next sections we will show that the theoretical strength is related to the force
needed to break a bond linking adjacent atoms, and that the size effect is caused by the
size of imperfections inside a solid.

11.2 Theoretical Strength

27 We start, [?] by exploring the energy of interaction between two adjacent atoms at
equilibrium separated by a distance a0, Fig. 11.3. The total energy which must be
supplied to separate atom C from C’ is

U0 = 2γ (11.4)

where γ is the surface energy1, and the factor of 2 is due to the fact that upon sepa-
ration, we have two distinct surfaces.

11.2.1 Ideal Strength in Terms of Physical Parameters

28 We shall first derive an expression for the ideal strength in terms of physical parameters,
and in the next section the strength will be expressed in terms of engineering ones.

Solution I: Force being the derivative of energy, we have F = dU
da
, thus F = 0 at a = a0,

Fig. 11.4, and is maximum at the inflection point of the U0 − a curve. Hence, the
slope of the force displacement curve is the stiffness of the atomic spring and should
be related to E. If we let x = a − a0, then the strain would be equal to ε = x

a0
.

1From watching raindrops and bubbles it is obvious that liquid water has surface tension. When the surface of a liquid
is extended (soap bubble, insect walking on liquid) work is done against this tension, and energy is stored in the new
surface. When insects walk on water it sinks until the surface energy just balances the decrease in its potential energy. For
solids, the chemical bonds are stronger than for liquids, hence the surface energy is stronger. The reason why we do not
notice it is that solids are too rigid to be distorted by it. Surface energy γ is expressed in J/m2 and the surface energies
of water, most solids, and diamonds are approximately .077, 1.0, and 5.14 respectively.
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Figure 11.4: Energy and Force Binding Two Adjacent Atoms

Furthermore, if we define the stress as σ = F
a20
, then the σ−ε curve will be as shown

in Fig. 11.5.

From this diagram, it would appear that the sine curve would be an adequate
approximation to this relationship. Hence,

σ = σtheormax sin 2π
x

λ
(11.5)

and the maximum stress σtheormax would occur at x = λ
4
. The energy required to

separate two atoms is thus given by the area under the sine curve, and from Eq.
11.4, we would have

2γ = U0 =
∫ λ

2

0
σtheormax sin

(
2π

x

λ

)
dx (11.6)

=
λ

2π
σtheormax [− cos (

2πx

λ
)] |

λ
2
0 (11.7)

=
λ

2π
σtheormax [−

−1︷ ︸︸ ︷
cos (

2πλ

2λ
)+

1︷ ︸︸ ︷
cos(0)] (11.8)

⇒ λ =
2γπ

σtheormax

(11.9)

Also for very small displacements (small x) sin x ≈ x, thus Eq. 11.5 reduces to

σ ≈ σtheormax

2πx

λ
≈ Ex

a0
(11.10)

elliminating x,

σtheormax ≈ E

a0

λ

2π
(11.11)
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Figure 11.5: Stress Strain Relation at the Atomic Level

Substituting for λ from Eq. 11.9, we get

σtheormax ≈
√
Eγ

a0
(11.12)

Solution II: For two layers of atoms a0 apart, the strain energy per unit area due to σ
(for linear elastic systems) is

U = 1
2
σεao

σ = Eε

}
U =

σ2ao
2E

(11.13)

If γ is the surface energy of the solid per unit area, then the total surface energy of
two new fracture surfaces is 2γ.

For our theoretical strength, U = 2γ ⇒ (σtheormax )
2a0

2E
= 2γ or σtheormax = 2

√
γE
a0

Note that here we have assumed that the material obeys Hooke’s Law up to failure,
since this is seldom the case, we can simplify this approximation to:

σtheormax =

√
Eγ

a0
(11.14)

which is the same as Equation 11.12

Example: As an example, let us consider steel which has the following properties: γ =
1 J
m2 ; E = 2× 1011 N

m2 ; and a0 ≈ 2× 10−10 m. Thus from Eq. 11.12 we would have:

σtheormax ≈
√
(2× 1011)(1)

2× 10−10
(11.15)

≈ 3.16× 1010
N

m2
(11.16)

≈ E

6
(11.17)

Thus this would be the ideal theoretical strength of steel.
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11.2.2 Ideal Strength in Terms of Engineering Parameter

29 We note that the force to separate two atoms drops to zero when the distance between
them is a0 + a where a0 corresponds to the origin and a to λ

2
. Thus, if we take a = λ

2
or

λ = 2a, combined with Eq. 11.11 would yield

σtheormax ≈ E

a0

a

π
(11.18)

30 Alternatively combining Eq. 11.9 with λ = 2a gives

a ≈ γπ

σtheormax

(11.19)

Combining those two equations will give

γ ≈ E

a0

(
a

π

)2
(11.20)

31 However, since as a first order approximation a ≈ a0 then the surface energy will be

γ ≈ Ea0
10

(11.21)

This equation, combined with Eq. 11.12 will finally give

σtheormax ≈ E√
10

(11.22)

which is an approximate expression for the theoretical maximum strength in terms of E.

11.3 Size Effect; Griffith Theory

32 In his quest for an explanation of the size effect, Griffith came across Inglis’s paper,
and his “strike of genius” was to assume that strength is reduced due to the presence of
internal flaws. Griffith postulated that the theoretical strength can only be reached at
the point of highest stress concentration, and accordingly the far-field applied stress will
be much smaller.

33 Hence, assuming an elliptical imperfection, and from equation 11.2

σtheormax = σactcr

(
1 + 2

√
a

ρ

)
(11.23)

σ is the stress at the tip of the ellipse which is caused by a (lower) far field stress σactcr .

Asssuming ρ ≈ a0 and since 2
√

a
a0
$ 1, for an ideal plate under tension with only one

single elliptical flaw the strength may be obtained from

σtheormax = 2σactcr

√
a

a0
(11.24)
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hence, equating with Eq. 11.12, we obtain

σtheormax = 2σactcr

√
a

ao︸ ︷︷ ︸
Macro

=

√
Eγ

a0︸ ︷︷ ︸
Micro

(11.25)

From this very important equation, we observe that

1. The left hand side is based on a linear elastic solution of a macroscopic problem
solved by Inglis.

2. The right hand side is based on the theoretical strength derived from the sinu-
soidal stress-strain assumption of the interatomic forces, and finds its roots in micro-
physics.

Finally, this equation would give (at fracture)

σactcr =

√
Eγ

4a
(11.26)

As an example, let us consider a flaw with a size of 2a = 5, 000a0

σactcr =
√

Eγ
4a

γ = Ea0
10

}
σactcr =

√
E2

40
ao
a

a
a0

= 2, 500

 σactcr =
√

E2

100,000
= E
100

√
10

(11.27)

Thus if we set a flaw size of 2a = 5, 000a0 in γ ≈ Ea0
10

this is enough to lower the

theoretical fracture strength from E√
10

to a critical value of magnitude E
100

√
10
, or a factor

of 100.
As an example

σtheormax = 2σactcr

√
a
ao

a = 10−6m = 1µ
ao = 1Å = ρ = 10−10m

σtheormax = 2σactcr

√
10−6

10−10
= 200σactcr (11.28)

Therefore at failure

σactcr = σtheormax

200

σtheormax = E
10

}
σactcr ≈ E

2, 000
(11.29)

which can be attained. For instance for steel E
2,000

= 30,000
2,000

= 15 ksi
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Chapter 12

BEAM THEORY

This chapter is adapted from the Author’s lecture notes in Structural Analysis.

12.1 Introduction

20 In the preceding chapters we have focused on the behavior of a continuum, and the 15
equations and 15 variables we introduced, were all derived for an infinitesimal element.

21 In practice, few problems can be solved analytically, and even with computer it is quite
difficult to view every object as a three dimensional one. That is why we introduced the
2D simplification (plane stress/strain), or 1D for axially symmetric problems. In the
preceding chapter we saw a few of those solutions.

22 Hence, to widen the scope of application of the fundamental theory developed previ-
ously, we could either resort to numerical methods (such as the finite difference, finite
element, or boundary elements), or we could further simplify the problem.

23 Solid bodies, in general, have certain peculiar geometric features amenable to a reduc-
tion from three to fewer dimensions. If one dimension of the structural element1 under
consideration is much greater or smaller than the other three, than we have a beam, or
a plate respectively. If the plate is curved, then we have a shell.

24 For those structural elements, it is customary to consider as internal variables the
resultant of the stresses as was shown in Sect. ??.

25 Hence, this chapter will focus on a brief introduction to beam theory. This will however
be preceded by an introduction to Statics as the internal forces would also have to be in
equilibrium with the external ones.

26 Beam theory is perhaps the most successful theory in all of structural mechanics, and
it forms the basis of structural analysis which is so dear to Civil and Mechanical
engineers.

1So far we have restricted ourselves to a continuum, in this chapter we will consider a structural element.
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12.2 Statics

12.2.1 Equilibrium

27 Any structural element, or part of it, must satisfy equilibrium.

28 Summation of forces and moments, in a static system must be equal to zero2.

29 In a 3D cartesian coordinate system there are a total of 6 independent equations of
equilibrium:

ΣFx = ΣFy = ΣFz = 0
ΣMx = ΣMy = ΣMz = 0

(12.1)

30 In a 2D cartesian coordinate system there are a total of 3 independent equations of
equilibrium:

ΣFx = ΣFy = ΣMz = 0 (12.2)

31 All the externally applied forces on a structure must be in equilibrium. Reactions
are accordingly determined.

32 For reaction calculations, the externally applied load may be reduced to an equivalent
force3.

33 Summation of the moments can be taken with respect to any arbitrary point.

34 Whereas forces are represented by a vector, moments are also vectorial quantities and
are represented by a curved arrow or a double arrow vector.

35 Not all equations are applicable to all structures, Table 12.1

Structure Type Equations
Beam, no axial forces ΣFy ΣMz

2D Truss, Frame, Beam ΣFx ΣFy ΣMz

Grid ΣFz ΣMx ΣMy

3D Truss, Frame ΣFx ΣFy ΣFz ΣMx ΣMy ΣMz

Alternate Set
Beams, no axial Force ΣMA

z ΣMB
z

2 D Truss, Frame, Beam ΣFx ΣMA
z ΣMB

z

ΣMA
z ΣMB

z ΣMC
z

Table 12.1: Equations of Equilibrium

36 The three conventional equations of equilibrium in 2D: ΣFx,ΣFy and ΣMz can be
replaced by the independent moment equations ΣMA

z , ΣM
B
z , ΣM

C
z provided that A, B,

and C are not colinear.
2In a dynamic system ΣF = ma where m is the mass and a is the acceleration.
3However for internal forces (shear and moment) we must use the actual load distribution.
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37 It is always preferable to check calculations by another equation of equilibrium.

38 Before you write an equation of equilibrium,

1. Arbitrarily decide which is the +ve direction

2. Assume a direction for the unknown quantities

3. The right hand side of the equation should be zero

If your reaction is negative, then it will be in a direction opposite from the one assumed.

39 Summation of external forces is equal and opposite to the internal ones (more about
this below). Thus the net force/moment is equal to zero.

40 The external forces give rise to the (non-zero) shear and moment diagram.

12.2.2 Reactions

41 In the analysis of structures, it is often easier to start by determining the reactions.

42 Once the reactions are determined, internal forces (shear and moment) are determined
next; finally, internal stresses and/or deformations (deflections and rotations) are deter-
mined last.

43 Depending on the type of structures, there can be different types of support conditions,
Fig. 12.1.

Figure 12.1: Types of Supports

Roller: provides a restraint in only one direction in a 2D structure, in 3D structures a
roller may provide restraint in one or two directions. A roller will allow rotation.

Hinge: allows rotation but no displacements.
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Fixed Support: will prevent rotation and displacements in all directions.

12.2.3 Equations of Conditions

44 If a structure has an internal hinge (which may connect two or more substructures),
then this will provide an additional equation (ΣM = 0 at the hinge) which can be
exploited to determine the reactions.

45 Those equations are often exploited in trusses (where each connection is a hinge) to
determine reactions.

46 In an inclined roller support with Sx and Sy horizontal and vertical projection, then
the reaction R would have, Fig. 12.2.

Rx

Ry

=
Sy
Sx

(12.3)

Figure 12.2: Inclined Roller Support

12.2.4 Static Determinacy

47 In statically determinate structures, reactions depend only on the geometry, boundary
conditions and loads.

48 If the reactions can not be determined simply from the equations of static equilibrium
(and equations of conditions if present), then the reactions of the structure are said to
be statically indeterminate.

49 The degree of static indeterminacy is equal to the difference between the number
of reactions and the number of equations of equilibrium (plus the number of equations
of conditions if applicable), Fig. 12.3.

50 Failure of one support in a statically determinate system results in the collapse of the
structures. Thus a statically indeterminate structure is safer than a statically determi-
nate one.

51 For statically indeterminate structures, reactions depend also on the material proper-
ties (e.g. Young’s and/or shear modulus) and element cross sections (e.g. length, area,
moment of inertia).
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Figure 12.3: Examples of Static Determinate and Indeterminate Structures

12.2.5 Geometric Instability

52 The stability of a structure is determined not only by the number of reactions but also
by their arrangement.

53 Geometric instability will occur if:

1. All reactions are parallel and a non-parallel load is applied to the structure.

2. All reactions are concurrent, Fig. 12.4.

Figure 12.4: Geometric Instability Caused by Concurrent Reactions

3. The number of reactions is smaller than the number of equations of equilibrium,
that is a mechanism is present in the structure.

54 Mathematically, this can be shown if the determinant of the equations of equilibrium
is equal to zero (or the equations are inter-dependent).

12.2.6 Examples

Example 12-1: Simply Supported Beam

Victor Saouma Introduction to Continuum Mechanics
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Determine the reactions of the simply supported beam shown below.

Solution:
The beam has 3 reactions, we have 3 equations of static equilibrium, hence it is statically
determinate.

(+✲ )ΣFx = 0; ⇒ Rax − 36 k = 0
(+ ✻) ΣFy = 0; ⇒ Ray +Rdy − 60 k − (4) k/ft(12) ft = 0
(+ �

✁✛) ΣM c
z = 0; ⇒ 12Ray − 6Rdy − (60)(6) = 0

or through matrix inversion (on your calculator) 1 0 0
0 1 1
0 12 −6




Rax

Ray

Rdy

 =


36
108
360

 ⇒


Rax

Ray

Rdy

 =


36 k

56 k

52 k


Alternatively we could have used another set of equations:

(+ �
✁✛) ΣMa

z = 0; (60)(6) + (48)(12)− (Rdy)(18) = 0 ⇒ Rdy = 52 k ✻
(+ �

✁✛)ΣMd
z = 0; (Ray)(18)− (60)(12)− (48)(6) = 0 ⇒ Ray = 56 k ✻

Check:
(+ ✻)ΣFy = 0; ; 56− 52− 60− 48 = 0

√

12.3 Shear & Moment Diagrams

12.3.1 Design Sign Conventions

55 Before we derive the Shear-Moment relations, let us arbitrarily define a sign convention.

56 The sign convention adopted here, is the one commonly used for design purposes4.
With reference to Fig. 12.5

Load Positive along the beam’s local y axis (assuming a right hand side convention),
that is positive upward.

Axial: tension positive.
4Note that this sign convention is the opposite of the one commonly used in Europe!
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Figure 12.5: Shear and Moment Sign Conventions for Design

Flexure A positive moment is one which causes tension in the lower fibers, and com-
pression in the upper ones. For frame members, a positive moment is one which
causes tension along the inner side.

Shear A positive shear force is one which is “up” on a negative face, or “down” on
a positive one. Alternatively, a pair of positive shear forces will cause clockwise
rotation.

12.3.2 Load, Shear, Moment Relations

57 Let us derive the basic relations between load, shear and moment. Considering an
infinitesimal length dx of a beam subjected to a positive load5 w(x), Fig. 12.6. The

Figure 12.6: Free Body Diagram of an Infinitesimal Beam Segment

infinitesimal section must also be in equilibrium.

58 There are no axial forces, thus we only have two equations of equilibrium to satisfy
ΣFy = 0 and ΣMz = 0.

59 Since dx is infinitesimally small, the small variation in load along it can be neglected,
therefore we assume w(x) to be constant along dx.

60 To denote that a small change in shear and moment occurs over the length dx of the
element, we add the differential quantities dVx and dMx to Vx and Mx on the right face.

5In this derivation, as in all other ones we should assume all quantities to be positive.
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61 Next considering the first equation of equilibrium

(+ ✻)ΣFy = 0⇒ Vx + wxdx− (Vx + dVx) = 0

or
dV

dx
= w(x) (12.4)

The slope of the shear curve at any point along the axis of a member
is given by the load curve at that point.

62 Similarly

(+ �
✁✛) ΣMo = 0 ⇒Mx + Vxdx− wxdx

dx

2
− (Mx + dMx) = 0

Neglecting the dx2 term, this simplifies to

dM

dx
= V (x) (12.5)

The slope of the moment curve at any point along the axis of a
member is given by the shear at that point.

63 Alternative forms of the preceding equations can be obtained by integration

V =
∫
w(x)dx (12.6)

∆V21 = Vx2 − Vx1 =
∫ x2

x1

w(x)dx (12.7)

The change in shear between 1 and 2, ∆V21, is equal to the area under
the load between x1 and x2.

and

M =
∫
V (x)dx (12.8)

∆M21 = M2 −M1 =
∫ x2

x1

V (x)dx (12.9)

The change in moment between 1 and 2, ∆M21, is equal to the area
under the shear curve between x1 and x2.

64 Note that we still need to have V1 and M1 in order to obtain V2 and M2 respectively.

65 It can be shown that the equilibrium of forces and of moments equations are nothing
else than the three dimensional linear momentum

∂Tij
∂xj

+ ρbi = ρdvi
dt

and moment of

momentum
∫
S
(r×t)dS +

∫
V
(r×ρb)dV =

d

dt

∫
V
(r×ρv)dV equations satisfied on the

average over the cross section.
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12.3.3 Examples

Example 12-2: Simple Shear and Moment Diagram

Draw the shear and moment diagram for the beam shown below

Solution:
The free body diagram is drawn below

Victor Saouma Introduction to Continuum Mechanics



Draft12–10 BEAM THEORY

Reactions are determined from the equilibrium equations

(+ ✛) ΣFx = 0; ⇒ −RAx + 6 = 0⇒ RAx = 6 k

(+ �
✁✛)ΣMA = 0; ⇒ (11)(4) + (8)(10) + (4)(2)(14 + 2)− RFy(18) = 0 ⇒ RFy = 14 k

(+ ✻)ΣFy = 0; ⇒ RAy − 11− 8− (4)(2) + 14 = 0⇒ RAy = 13 k

Shear are determined next.

1. At A the shear is equal to the reaction and is positive.

2. At B the shear drops (negative load) by 11 k to 2 k.

3. At C it drops again by 8 k to −6 k.

4. It stays constant up to D and then it decreases (constant negative slope since
the load is uniform and negative) by 2 k per linear foot up to −14 k.

5. As a check, −14 k is also the reaction previously determined at F .

Moment is determined last:

1. The moment at A is zero (hinge support).

2. The change in moment between A and B is equal to the area under the corre-
sponding shear diagram, or ∆MB−A = (13)(4) = 52.

3. etc...

12.4 Beam Theory

12.4.1 Basic Kinematic Assumption; Curvature

66 Fig.12.7 shows portion of an originally straight beam which has been bent to the
radius ρ by end couples M . support conditions, Fig. 12.1. It is assumed that plane
cross-sections normal to the length of the unbent beam remain plane after
the beam is bent.

67 Except for the neutral surface all other longitudinal fibers either lengthen or shorten,
thereby creating a longitudinal strain εx. Considering a segment EF of length dx at a
distance y from the neutral axis, its original length is

EF = dx = ρdθ (12.10)

and

dθ =
dx

ρ
(12.11)

68 To evaluate this strain, we consider the deformed length E ′F ′

E ′F ′ = (ρ− y)dθ = ρdθ − ydθ = dx− y
dx

ρ
(12.12)
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Neutral Axis

dx

ρ

E’ F’

E F

O

M M

dθ

X

Y

Z

dA

+ve Curvature, +ve bending

-ve Curvature, -ve Bending

Figure 12.7: Deformation of a Beam under Pure Bending

The strain is now determined from:

εx =
E ′F ′ − EF

EF
=

dx− y dx
ρ
− dx

dx
(12.13)

or after simplification

εx = −y

ρ
(12.14)

where y is measured from the axis of rotation (neutral axis). Thus strains are proportional
to the distance from the neutral axis.

69 ρ (Greek letter rho) is the radius of curvature. In some textbook, the curvature κ
(Greek letter kappa) is also used where

κ =
1

ρ
(12.15)

thus,

εx = −κy (12.16)

70 It should be noted that Galileo (1564-1642) was the first one to have made a contri-
bution to beam theory, yet he failed to make the right assumption for the planar cross
section. This crucial assumption was made later on by Jacob Bernoulli (1654-1705), who
did not make it quite right. Later Leonhard Euler (1707-1783) made significant contribu-
tions to the theory of beam deflection, and finally it was Navier (1785-1836) who clarified
the issue of the kinematic hypothesis.
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12.4.2 Stress-Strain Relations

71 So far we considered the kinematic of the beam, yet later on we will need to consider
equilibrium in terms of the stresses. Hence we need to relate strain to stress.

72 For linear elastic material Hooke’s law states

σx = Eεx (12.17)

where E is Young’s Modulus.

73 Combining Eq. with equation 12.16 we obtain

σx = −Eκy (12.18)

12.4.3 Internal Equilibrium; Section Properties

74 Just as external forces acting on a structure must be in equilibrium, the internal forces
must also satisfy the equilibrium equations.

75 The internal forces are determined by slicing the beam. The internal forces on the
“cut” section must be in equilibrium with the external forces.

12.4.3.1 ΣFx = 0; Neutral Axis

76 The first equation we consider is the summation of axial forces.

77 Since there are no external axial forces (unlike a column or a beam-column), the
internal axial forces must be in equilibrium.

ΣFx = 0⇒
∫
A
σxdA = 0 (12.19)

where σx was given by Eq. 12.18, substituting we obtain∫
A
σxdA = −

∫
A
EκydA = 0 (12.20-a)

But since the curvature κ and the modulus of elasticity E are constants, we conclude
that ∫

A
ydA = 0 (12.21)

or the first moment of the cross section with respect to the z axis is zero. Hence we
conclude that the neutral axis passes through the centroid of the cross section.
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12.4.3.2 ΣM = 0; Moment of Inertia

78 The second equation of internal equilibrium which must be satisfied is the summation
of moments. However contrarily to the summation of axial forces, we now have an
external moment to account for, the one from the moment diagram at that particular
location where the beam was sliced, hence

ΣMz = 0; �
✁✛+ve; M︸︷︷︸

Ext.

= −
∫
A
σxydA︸ ︷︷ ︸
Int.

(12.22)

where dA is an differential area a distance y from the neutral axis.

79 Substituting Eq. 12.18

M = −
∫
A
σxydA

σx = −Eκy

M = κE
∫
A
y2dA (12.23)

80 We now pause and define the section moment of inertia with respect to the z axis as

I
def
=

∫
A
y2dA (12.24)

and section modulus as

S
def
=

I

c
(12.25)

12.4.4 Beam Formula

81 We now have the ingredients in place to derive one of the most important equations
in structures, the beam formula. This formula will be extensively used for design of
structural components.

82 We merely substitute Eq. 12.24 into 12.23,

M = κE
∫
A
y2dA

I =
∫
a
y2dA

 M
EI

= κ = 1
ρ

(12.26)

which shows that the curvature of the longitudinal axis of a beam is proportional to the
bending moment M and inversely proportional to EI which we call flexural rigidity.

83 Finally, inserting Eq. 12.18 above, we obtain

σx = −Eκy
κ = M

EI

}
σx = −My

I
(12.27)

Hence, for a positive y (above neutral axis), and a positive moment, we will have com-
pressive stresses above the neutral axis.

Victor Saouma Introduction to Continuum Mechanics



Draft12–14 BEAM THEORY

84 Alternatively, the maximum fiber stresses can be obtained by combining the preceding
equation with Equation 12.25

σx = −M

S
(12.28)

12.4.5 Limitations of the Beam Theory

12.4.6 Example

Example 12-3: Design Example

A 20 ft long, uniformly loaded, beam is simply supported at one end, and rigidly
connected at the other. The beam is composed of a steel tube with thickness t = 0.25 in.
Select the radius such that σmax ≤ 18 ksi, and ∆max ≤ L/360.

20’

r 0.25’

1 k/ft

Solution:

1. Steel has E = 29, 000 ksi, and from above Mmax = wL2

8
, ∆max = wL4

185EI
, and I = πr3t.

2. The maximum moment will be

Mmax =
wL2

8
=

(1) k/ft(20)2 ft2

8
= 50 k.ft (12.29)

3. We next seek a relation between maximum deflection and radius

∆max = wL4

185EI
I = πr3t

} ∆ = wL4

185Eπr3t

= (1) k/ft(20)4 ft4(12)3 in3/ ft3

(185)(29,000) ksi(3.14)r3(0.25) in

= 65.65
r3

(12.30)

4. Similarly for the stress

σ = M
S

S = I
r

I = πr3t


σ = M

πr2t

= (50) k.ft(12) in/ft
(3.14)r2(0.25) in

= 764
r2

(12.31)

5. We now set those two values equal to their respective maximum

∆max =
L

360
=

(20) ft(12) in/ft

360
= 0.67 in =

65.65

r3
⇒ r =

3

√
65.65

0.67
= 4.61 in(12.32-a)

σmax = (18) ksi =
764

r2
⇒ r =

√
764

18
= 6.51 in (12.32-b)
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Chapter 13

VARIATIONAL METHODS

Abridged section from author’s lecture notes in finite elements.

20 Variational methods provide a powerful method to solve complex problems in contin-
uum mechanics (and other fields as well).

21 As shown in Appendix C, there is a duality between the strong form, in which a
differential equation (or Euler’s equation) is exactly satisfied at every point (such as in
Finite Differences), and the weak form where the equation is satisfied in an averaged
sense (as in finite elements).

22 Since only few problems in continuum mechanics can be solved analytically, we often
have to use numerical techniques, Finite Elements being one of the most powerful and
flexible one.

23 At the core of the finite element formulation are the variational formulations (or energy
based methods) which will be discussed in this chapter.

24 For illustrative examples, we shall use beams, but the methods is obviously applicable
to 3D continuum.

13.1 Preliminary Definitions

25 Work is defined as the product of a force and displacement

W
def
=

∫ b

a
F.ds (13.1-a)

dW = Fxdx+ Fydy (13.1-b)

26 Energy is a quantity representing the ability or capacity to perform work.

27 The change in energy is proportional to the amount of work performed. Since only the
change of energy is involved, any datum can be used as a basis for measure of energy.
Hence energy is neither created nor consumed.

28 The first principle of thermodynamics (Eq. 6.44), states
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Figure 13.1: *Strain Energy and Complementary Strain Energy

The time-rate of change of the total energy (i.e., sum of the kinetic energy and
the internal energy) is equal to the sum of the rate of work done by the external
forces and the change of heat content per unit time:

d
dt
(K + U) = We +H (13.2)

where K is the kinetic energy, U the internal strain energy, W the external work, and H
the heat input to the system.

29 For an adiabatic system (no heat exchange) and if loads are applied in a quasi static
manner (no kinetic energy), the above relation simplifies to:

We = U (13.3)

13.1.1 Internal Strain Energy

30 The strain energy density of an arbitrary material is defined as, Fig. 13.1

U0
def
=

∫ ε

0
σ:dε (13.4)

31 The complementary strain energy density is defined

U∗
0
def
=

∫ σ

0
ε:dσ (13.5)

32 The strain energy itself is equal to

U
def
=

∫
Ω
U0dΩ (13.6)

U∗ def
=

∫
Ω
U∗
0dΩ (13.7)
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33 To obtain a general form of the internal strain energy, we first define a stress-strain
relationship accounting for both initial strains and stresses

σ = D:(ε− ε0) + σ0 (13.8)

where D is the constitutive matrix (Hooke’s Law); ε is the strain vector due to the
displacements u; ε0 is the initial strain vector; σ0 is the initial stress vector; and σ is the
stress vector.

34 The initial strains and stresses are the result of conditions such as heating or cooling
of a system or the presence of pore pressures in a system.

35 The strain energy U for a linear elastic system is obtained by substituting

σ = D:ε (13.9)

with Eq. 13.4 and 13.8

U =
1

2

∫
Ω

εT :D:εdΩ−
∫
Ω

εT :D:ε0dΩ+
∫
Ω

εT :σ0dΩ (13.10)

where Ω is the volume of the system.

36 Considering uniaxial stresses, in the absence of initial strains and stresses, and for
linear elastic systems, Eq. 13.10 reduces to

U =
1

2

∫
Ω
ε Eε︸︷︷︸

σ

dΩ (13.11)

37 When this relation is applied to various one dimensional structural elements it leads
to

Axial Members:

U =
∫
Ω

εσ

2
dΩ

σ = P
A

ε = P
AE

dΩ = Adx


U = 1

2

∫ L

0

P 2

AE
dx (13.12)

Flexural Members:

U = 1
2

∫
Ω
ε Eε︸︷︷︸

σ

σx =
Mzy
Iz

ε = Mzy
EIz

dΩ = dAdx∫
A
y2dA = Iz


U = 1

2

∫ L

0

M2

EIz
dx (13.13)
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13.1.2 External Work

38 External work W performed by the applied loads on an arbitrary system is defined as

We
def
=

∫
Ω
uT ·bdΩ +

∫
Γt
uT ·t̂dΓ (13.14)

where b is the body force vector; t̂ is the applied surface traction vector; and Γt is that
portion of the boundary where t̂ is applied, and u is the displacement.

39 For point loads and moments, the external work is

We =
∫ ∆f
0

Pd∆+
∫ θf

0
Mdθ (13.15)

40 For linear elastic systems, (P = K∆) we have for point loads

P = K∆

We =
∫ ∆f
0

Pd∆

We = K
∫ ∆f

0
∆d∆ =

1

2
K∆2f (13.16)

When this last equation is combined with Pf = K∆f we obtain

We =
1

2
Pf∆f (13.17)

where K is the stiffness of the structure.

41 Similarly for an applied moment we have

We =
1

2
Mfθf (13.18)

13.1.3 Virtual Work

42 We define the virtual work done by the load on a body during a small, admissible
(continuous and satisfying the boundary conditions) change in displacements.

Internal Virtual Work δWi
def
= −

∫
Ω

σ:δεdΩ (13.19)

External Virtual Work δWe
def
=

∫
Γt
t̂·δudΓ +

∫
Ω
b·δudΩ (13.20)

where all the terms have been previously defined and b is the body force vector.

43 Note that the virtual quantity (displacement or force) is one that we will approxi-
mate/guess as long as it meets some admissibility requirements.

Victor Saouma Introduction to Continuum Mechanics
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13.1.3.1 Internal Virtual Work

44 Next we shall derive a displacement based expression of δU for each type of one di-
mensional structural member. It should be noted that the Virtual Force method would
yield analogous ones but based on forces rather than displacements.

45 Two sets of solutions will be given, the first one is independent of the material stress
strain relations, and the other assumes a linear elastic stress strain relation.

Elastic Systems In this set of formulation, we derive expressions of the virtual strain
energies which are independent of the material constitutive laws. Thus δU will be
left in terms of forces and displacements.

Axial Members:

δU =
∫ L

0
σδεdΩ

dΩ = Adx

 δU = A
∫ L

0
σδεdx (13.21)

Flexural Members:

δU =
∫
σxδεxdΩ

M =
∫
A
σxydA⇒ M

y
=

∫
A
σxdA

δφ = δε
y
⇒ δφy = δε

dΩ =
∫ L

0

∫
A
dAdx


δU =

∫ L

0
Mδφdx (13.22)

Linear Elastic Systems Should we have a linear elastic material (σ = Eε) then:

Axial Members:

δU =
∫
σδεdΩ

σx = Eεx = E du
dx

δε = d(δu)
dx

dΩ = Adx


δU =

∫ L

0
E
du

dx︸ ︷︷ ︸
“σ′′

d(δu)

dx︸ ︷︷ ︸
“δε′′

Adx︸ ︷︷ ︸
dΩ

(13.23)

Flexural Members:

δU =
∫
σxδεxdΩ

σx =
My
Iz

M = d2v
dx2EIz

}
σx =

d2v

dx2︸︷︷︸
κ

Ey

δεx =
δσx
E

= d2(δv)
dx2 y

dΩ = dAdx


δU =

∫ L

0

∫
A

d2v

dx2
Ey

d2(δv)

dx2
ydAdx (13.24)

or:
Eq. 13.24∫
A
y2dA = Iz

 δU =
∫ L

0
EIz

d2v

dx2︸ ︷︷ ︸
“σ′′

d2(δv)

dx2︸ ︷︷ ︸
“δε′′

dx (13.25)
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13.1.3.2 External Virtual Work δW

46 For concentrated forces (and moments):

δW =
∫
δ∆qdx+

∑
i
(δ∆i)Pi +

∑
i
(δθi)Mi (13.26)

where: δ∆i = virtual displacement.

13.1.4 Complementary Virtual Work

47 We define the complementary virtual work done by the load on a body during a small,
admissible (continuous and satisfying the boundary conditions) change in displacements.

Complementary Internal Virtual Work δW ∗
i

def
= −

∫
Ω

ε:δσdΩ (13.27)

Complementary External Virtual Work δW ∗
e

def
=

∫
Γu
û·δtdΓ (13.28)

13.1.5 Potential Energy

48 The potential of external work W in an arbitrary system is defined as

We
def
=

∫
Ω
uT ·bdΩ +

∫
Γt
uT ·t̂dΓ + u·P (13.29)

where u are the displacements, b is the body force vector; t̂ is the applied surface traction
vector; Γt is that portion of the boundary where t̂ is applied, and P are the applied nodal
forces.

49 Note that the potential of the external work (W) is different from the external work
itself (W )

50 The potential energy of a system is defined as

Π
def
= U −We (13.30)

=
∫
Ω
U0dΩ−

(∫
Ω
u·bdΩ+

∫
Γt
u·t̂dΓ + u·P

)
(13.31)

51 Note that in the potential the full load is always acting, and through the displacements
of its points of application it does work but loses an equivalent amount of potential, this
explains the negative sign.

13.2 Principle of Virtual Work and Complementary Virtual

Work

52 The principles of Virtual Work and Complementary Virtual Work relate force systems
which satisfy the requirements of equilibrium, and deformation systems which satisfy the

Victor Saouma Introduction to Continuum Mechanics
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requirement of compatibility:

1. In any application the force system could either be the actual set of external loads dp
or some virtual force system which happens to satisfy the condition of equilibrium
δp. This set of external forces will induce internal actual forces dσ or internal
hypothetical forces δσ compatible with the externally applied load.

2. Similarly the deformation could consist of either the actual joint deflections du and
compatible internal deformations dε of the structure, or some hypothetical external
and internal deformation δu and δε which satisfy the conditions of compatibility.

53 Thus we may have 2 possible combinations, Table 13.1: where: d corresponds to the

Force Deformation Formulation
External Internal External Internal

1 δp δσ du dε δU∗

2 dp dσ δu δε δU

Table 13.1: Possible Combinations of Real and Hypothetical Formulations

actual, and δ (with an overbar) to the hypothetical values.

13.2.1 Principle of Virtual Work

54 Derivation of the principle of virtual work starts with the assumption of that forces
are in equilibrium and satisfaction of the static boundary conditions.

55 The Equation of equilibrium (Eq. 6.26) which is rewritten as

∂σxx
∂x

+
∂τxy
∂y

+ bx = 0 (13.32)

∂σyy
∂y

+
∂τxy
∂x

+ by = 0 (13.33)

where b representing the body force. In matrix form, this can be rewritten as[
∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]
σxx
σyy
τxy

 +

{
bx
by

}
= 0 (13.34)

or

LTσ + b = 0 (13.35)

Note that this equation can be generalized to 3D.

56 The surface Γ of the solid can be decomposed into two parts Γt and Γu where tractions
and displacements are respectively specified.

Γ = Γt + Γu (13.36-a)

t = t̂ on Γt Natural B.C. (13.36-b)

u = û on Γu Essential B.C. (13.36-c)
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Figure 13.2: Tapered Cantilivered Beam Analysed by the Vitual Displacement Method

Equations 13.35 and 13.36-b constitute a statically admissible stress field.

57 The principle of virtual work (or more specifically of virtual displacement) can be
stated as

A deformable system is in equilibrium if the sum of the external virtual work
and the internal virtual work is zero for virtual displacements δu which are
kinematically admissible.

The major governing equations are summarized∫
Ω
δεT :σdΩ︸ ︷︷ ︸
−δWi

−
∫
Ω
δuT ·bdΩ−

∫
Γt
δuT ·t̂dΓ︸ ︷︷ ︸

−δWe

= 0 (13.37)

δε = L:δu in Ω (13.38)

δu = 0 on Γu (13.39)

58 Note that the principle is independent of material properties, and that the primary
unknowns are the displacements.

Example 13-1: Tapered Cantiliver Beam, Virtual Displacement

Analyse the problem shown in Fig. 13.2, by the virtual displacement method.
Solution:

1. For this flexural problem, we must apply the expression of the virtual internal strain
energy as derived for beams in Eq. 13.25. And the solutions must be expressed
in terms of the displacements which in turn must satisfy the essential boundary
conditions.

The approximate solutions proposed to this problem are

v =
(
1− cos

πx

2l

)
v2 (13.40)

v =

[
3
(
x

L

)2
− 2

(
x

L

)3]
v2 (13.41)
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2. These equations do indeed satisfy the essential B.C. (i.e kinematic), but for them
to also satisfy equilibrium they must satisfy the principle of virtual work.

3. Using the virtual displacement method we evaluate the displacements v2 from three
different combination of virtual and actual displacement:

Solution Total Virtual
1 Eqn. 13.40 Eqn. 13.41
2 Eqn. 13.40 Eqn. 13.40
3 Eqn. 13.41 Eqn. 13.41

Where actual and virtual values for the two assumed displacement fields are given
below.

Trigonometric (Eqn. 13.40) Polynomial (Eqn. 13.41)

v
(
1− cos πx

2l

)
v2

[
3
(
x
L

)2
− 2

(
x
L

)3]
v2

δv
(
1− cos πx

2l

)
δv2

[
3
(
x
L

)2
− 2

(
x
L

)3]
δv2

v′′ π2

4L2 cos
πx
2l
v2

(
6
L2 − 12x

L3

)
v2

δv′′ π2

4L2 cos
πx
2l
δv2

[
6
L2 − 12x

L3

]
δv2

δU =
∫ L

0
δv′′EIzv

′′dx (13.42)

δW = P2δv2 (13.43)

Solution 1:

δU =
∫ L

0

π2

4L2
cos

(
πx

2l

)
v2

(
6

L2
− 12x

L3

)
δv2EI1

(
1− x

2L

)
dx

=
3πEI1
2L3

[
1− 10

π
+

16

π2

]
v2δv2

= P2δv2 (13.44)

which yields:

v2 =
P2L

3

2.648EI1
(13.45)

Solution 2:

δU =
∫ L

0

π4

16L4
cos2

(
πx

2l

)
v2δv2EI1

(
1− x

2l

)
dx

=
π4EI1
32L3

(
3

4
+

1

π2

)
v2δv2

= P2δv2 (13.46)

which yields:

v2 =
P2L

3

2.57EI1
(13.47)
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Solution 3:

δU =
∫ L

0

(
6

L2
− 12x

L3

)2 (
1− x

2l

)
EI1δv2v2dx

=
9EI

L3
v2δv2

= P2δv2 (13.48)

which yields:

v2 =
P2L

3

9EI
(13.49)

13.2.2 Principle of Complementary Virtual Work

59 Derivation of the principle of complementary virtual work starts from the assumption
of a kinematicaly admissible displacements and satisfaction of the essential boundary
conditions.

60 Whereas we have previously used the vector notation for the principle of virtual work,
we will now use the tensor notation for this derivation.

61 The kinematic condition (strain-displacement):

εij =
1

2
(ui,j + uj,i) (13.50)

62 The essential boundary conditions are expressed as

ui = û on Γu (13.51)

63 The principle of virtual complementary work (or more specifically of virtual force)
which can be stated as

A deformable system satisfies all kinematical requirements if the sum of the
external complementary virtual work and the internal complementary virtual
work is zero for all statically admissible virtual stresses δσij .

The major governing equations are summarized∫
Ω
εijδσijdΩ︸ ︷︷ ︸
−δW ∗

i

−
∫
Γu

ûiδtidΓ︸ ︷︷ ︸
δW ∗

e

= 0 (13.52)

δσij,j = 0 in Ω (13.53)

δti = 0 on Γt (13.54)

64 Note that the principle is independent of material properties, and that the primary
unknowns are the stresses.
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Figure 13.3: Tapered Cantilevered Beam Analysed by the Virtual Force Method

65 Expressions for the complimentary virtual work in beams are given in Table 13.3

Example 13-2: Tapered Cantilivered Beam; Virtual Force

“Exact” solution of previous problem using principle of virtual work with virtual force.

∫ L

0
δM

M

EIz
dx︸ ︷︷ ︸

Internal

= δP∆︸ ︷︷ ︸
External

(13.55)

Note: This represents the internal virtual strain energy and external virtual work
written in terms of forces and should be compared with the similar expression derived in
Eq. 13.25 written in terms of displacements:

δU∗ =
∫ L

0
EIz

d2v

dx2︸ ︷︷ ︸
σ

d2(δv)

dx2︸ ︷︷ ︸
δε

dx (13.56)

Here: δM and δP are the virtual forces, and M
EIz

and ∆ are the actual displacements.
See Fig. 13.3 If δP = 1, then δM = x and M = P2x or:

(1)∆ =
∫ L

0
x

P2x

EI1(.5 +
x
L
)
dx

=
P2
EI1

∫ L

0

x2

L+x
2l

dx

=
P22L

EI1

∫ L

0

x2

L+ x
dx (13.57)

From Mathematica we note that:∫ 0
0

x2

a + bx
=

1

b3

[
1

2
(a+ bx)2 − 2a(a+ bx) + a2 ln(a+ bx)

]
(13.58)

Thus substituting a = L and b = 1 into Eqn. 13.58, we obtain:

∆ =
2P2L

EI1

[
1

2
(L+ x)2 − 2L(L+ x) + L2 ln(L+ x)

]
|L0
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=
2P2L

EI1

[
2L2 − 4L2 + L2 ln 2L− L2

2
+ 2L2 + L2 logL

]

=
2P2L

EI1

[
L2(ln 2− 1

2
)
]

=
P2L

3

2.5887EI1
(13.59)

Similarly:

θ =
∫ L

0

M(1)

EI1
(
.5 + x

L

) =
2ML

EI1

∫ L

0

1

L+ x
=

2ML

EI1
ln(L+ x) |L0

=
2ML

EI1
(ln 2L− lnL) =

2ML

EI1
ln 2 =

ML

.721EI1
(13.60)

13.3 Potential Energy

13.3.1 Derivation

66 From section ??, if U0 is a potential function, we take its differential

dU0 =
∂U0
∂εij

dεij (13.61-a)

dU∗
0 =

∂U0
∂σij

dσij (13.61-b)

67 However, from Eq. 13.4

U0 =
∫ εij

0
σijdεij (13.62-a)

dU0 = σijdεij (13.62-b)

thus,

∂U0
∂εij

= σij (13.63)

∂U∗
0

∂σij
= εij (13.64)

68 We now define the variation of the strain energy density at a point1

δU0 =
∂U

∂εij
δεij = σijδεij (13.65)

69 Applying the principle of virtual work, Eq. 13.37, it can be shown that
1Note that the variation of strain energy density is, δU0 = σijδεij , and the variation of the strain energy itself is

δU =
∫
Ω
δU0dΩ.
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k= 500 lbf/in

100 lbfmg=

Figure 13.4: Single DOF Example for Potential Energy

δΠ = 0 (13.66)

Π
def
= U −We (13.67)

=
∫
Ω
U0dΩ−

(∫
Ω
u·bdΩ+

∫
Γt
u·t̂dΓ + u·P

)
(13.68)

70 We have thus derived the principle of stationary value of the potential energy:

Of all kinematically admissible deformations (displacements satisfying the es-
sential boundary conditions), the actual deformations (those which correspond
to stresses which satisfy equilibrium) are the ones for which the total potential
energy assumes a stationary value.

71 For problems involving multiple degrees of freedom, it results from calculus that

δΠ =
∂Π

∂∆1
δ∆1 +

∂Π

∂∆2
δ∆2 + . . .+

∂Π

∂∆n

δ∆n (13.69)

72 It can be shown that the minimum potential energy yields a lower bound prediction of
displacements.

73 As an illustrative example (adapted from Willam, 1987), let us consider the single dof
system shown in Fig. 13.4. The strain energy U and potential of the external work W
are given by

U =
1

2
u(Ku) = 250u2 (13.70-a)

We = mgu = 100u (13.70-b)

Thus the total potential energy is given by

Π = 250u2 − 100u (13.71)

Victor Saouma Introduction to Continuum Mechanics



Draft13–14 VARIATIONAL METHODS
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Figure 13.5: Graphical Representation of the Potential Energy

and will be stationary for

∂Π =
dΠ

du
= 0 ⇒ 500u− 100 = 0⇒ u = 0.2 in (13.72)

Substituting, this would yield

U = 250(0.2)2 = 10 lbf-in
W = 100(0.2) = 20 lbf-in
Π = 10− 20 = −10 lbf-in

(13.73)

Fig. 13.5 illustrates the two components of the potential energy.

13.3.2 Rayleigh-Ritz Method

74 Continuous systems have infinite number of degrees of freedom, those are the dis-
placements at every point within the structure. Their behavior can be described by the
Euler Equation, or the partial differential equation of equilibrium. However, only the
simplest problems have an exact solution which (satisfies equilibrium, and the boundary
conditions).

75 An approximate method of solution is the Rayleigh-Ritz method which is based on the
principle of virtual displacements. In this method we approximate the displacement field
by a function

u1 ≈
n∑
i=1

c1iφ
1
i + φ10 (13.74-a)

u2 ≈
n∑
i=1

c2iφ
2
i + φ20 (13.74-b)
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u3 ≈
n∑
i=1

c3iφ
3
i + φ30 (13.74-c)

where cji denote undetermined parameters, and φ are appropriate functions of positions.

76 φ should satisfy three conditions

1. Be continuous.

2. Must be admissible, i.e. satisfy the essential boundary conditions (the natural
boundary conditions are included already in the variational statement. However,
if φ also satisfy them, then better results are achieved).

3. Must be independent and complete (which means that the exact displacement and
their derivatives that appear in Π can be arbitrary matched if enough terms are
used. Furthermore, lowest order terms must also be included).

In general φ is a polynomial or trigonometric function.

77 We determine the parameters cji by requiring that the principle of virtual work for
arbitrary variations δcji . or

δΠ(u1, u2, u3) =
n∑
i=1

(
∂Π

∂c1i
δc1i +

∂Π

∂c2i
δc2i +

∂Π

∂c3i
δc3i

)
= 0 (13.75)

for arbitrary and independent variations of δc1i , δc
2
i , and δc3i , thus it follows that

∂Π

∂cji
= 0 i = 1, 2, · · · , n; j = 1, 2, 3 (13.76)

Thus we obtain a total of 3n linearly independent simultaneous equations. From these
displacements, we can then determine strains and stresses (or internal forces). Hence we
have replaced a problem with an infinite number of d.o.f by one with a finite number.

78 Some general observations

1. cji can either be a set of coefficients with no physical meanings, or variables associated
with nodal generalized displacements (such as deflection or displacement).

2. If the coordinate functions φ satisfy the above requirements, then the solution con-
verges to the exact one if n increases.

3. For increasing values of n, the previously computed coefficients remain unchanged.

4. Since the strains are computed from the approximate displacements, strains and
stresses are generally less accurate than the displacements.

5. The equilibrium equations of the problem are satisfied only in the energy sense
δΠ = 0 and not in the differential equation sense (i.e. in the weak form but not
in the strong one). Therefore the displacements obtained from the approximation
generally do not satisfy the equations of equilibrium.
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Figure 13.6: Uniformly Loaded Simply Supported Beam Analyzed by the Rayleigh-Ritz Method

6. Since the continuous system is approximated by a finite number of coordinates
(or d.o.f.), then the approximate system is stiffer than the actual one, and the
displacements obtained from the Ritz method converge to the exact ones from below.

Example 13-3: Uniformly Loaded Simply Supported Beam; Polynomial Approximation

For the uniformly loaded beam shown in Fig. 13.6
let us assume a solution given by the following infinite series:

v = a1x(L− x) + a2x
2(L− x)2 + . . . (13.77)

for this particular solution, let us retain only the first term:

v = a1x(L− x) (13.78)

We observe that:

1. Contrarily to the previous example problem the geometric B.C. are immediately
satisfied at both x = 0 and x = L.

2. We can keep v in terms of a1 and take ∂Π
∂a1

= 0 (If we had left v in terms of a1 and

a2 we should then take both ∂Π
∂a1

= 0, and ∂Π
∂a2

= 0 ).

3. Or we can solve for a1 in terms of vmax(@x = L
2
) and take ∂Π

∂vmax
= 0.

Π = U −W =
∫ L

o

M2

2EIz
dx−

∫ L

0
wv(x)dx (13.79)
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Recalling that: M
EIz

= d2v
dx2 , the above simplifies to:

Π =
∫ L

0

EIz
2

(
d2v

dx2

)2
− wv(x)

 dx (13.80)

=
∫ L

0

[
EIz
2

(−2a1)
2 − a1wx(L− x)

]
dx

=
EIz
2

4a21L− a1w
L3

2
+ a1w

L3

3

= 2a21EIzL− a1wL
3

6
(13.81)

If we now take ∂Π
∂a1

= 0, we would obtain:

4a1EIzl −
wL3

6
= 0

a1 =
wL2

24EIz
(13.82)

Having solved the displacement field in terms of a1, we now determine vmax at L
2
:

v =
wL4

24EIz︸ ︷︷ ︸
a1

(
x

L
− x2

L2

)

=
wL4

96EIz
(13.83)

This is to be compared with the exact value of vexactmax = 5
384

wL4

EIz
= wL4

76.8EIz
which constitutes

≈ 17% error.
Note: If two terms were retained, then we would have obtained: a1 =

wL2

24EIz
& a2 =

w
24EIz

and vmax would be equal to vexactmax . (Why?)

13.4 Summary

79 Summary of Virtual work methods, Table 13.2.

Starts with Ends with In terms of virtual Solve for
Virtual Work U KAD SAS Displacement/strains Displacement
Complimentary Virtual Work U∗ SAS KAD Forces/Stresses Displacement

KAD: Kinematically Admissible Dispacements
SAS: Statically Admissible Stresses

Table 13.2: Comparison of Virtual Work and Complementary Virtual Work

80 A summary of the various methods introduced in this chapter is shown in Fig. 13.7.
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Ω
Γ

∇σ + ρb = 0

t− t̂ = 0 Γt

U0
def=

∫ ε
0 σ:dε

❄

✻
Gauss

δε−D:δu = 0
δu = 0 Γu

❄
Principle of Virtual Work

∫
Ω δε

T :σdΩ−
∫
Ω δu

T ·bdΩ−
∫
Γt
δuT ·̂tdΓ = 0

δWi − δWe = 0

Principle of Stationary
Potential Energy

δΠ = 0

Π def= U −We

Π =
∫
Ω
U0dΩ− (

∫
Ω
uibidΩ +

∫
Γt
uit̂idΓ)

❄
Rayleigh-Ritz

uj ≈
n∑
i=1

cjiφ
j
i + φj0

∂Π
∂cji

= 0 i = 1, 2, · · · , n; j = 1, 2, 3

εij − 1
2
(ui,j + uj,i) = 0

ui − û = 0 Γu

U∗
0

def=
∫σ
0 ε:σ

❄

✻
Gauss

δσij,j = 0
δti = 0 Γt

❄
Principle of Complementary

Virtual Work∫
Ω εijδσijdΩ−

∫
Γu
ûiδtidΓ = 0

δW ∗
i − δW ∗

e = 0

❄

Natural B.C.

❄ ❄
Essential B.C.

❄ ❄

Figure 13.7: Summary of Variational Methods
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Kinematically Admissible Displacements

Displacements satisfy the kinematic equations
and the the kinematic boundary conditions

Principle of Stationary
Complementary Energy

Principle of Complementary

Virtual Work

Principle of Virtual Work

Principle of Stationary
Potential Energy

Statically Admissible Stresses

Stresses satisfy the equilibrium conditions
and the static boundary conditions

✻

✻

❄

❄

Figure 13.8: Duality of Variational Principles

81 The duality between the two variational principles is highlighted by Fig. 13.8, where
beginning with kinematically admissible displacements, the principle of virtual work pro-
vides statically admissible solutions. Similarly, for statically admissible stresses, the
principle of complementary virtual work leads to kinematically admissible solutions.

82 Finally, Table 13.3 summarizes some of the major equations associated with one di-
mensional rod elements.
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U Virtual Displacement δU Virtual Force δU∗

General Linear General Linear

Axial 1
2

∫ L

0

P 2

AE
dx

∫ L

0

σδεdx

∫ L

0

E
du

dx︸ ︷︷ ︸
σ

d(δu)
dx︸ ︷︷ ︸
δε

Adx︸︷︷︸
dΩ

∫ L

0

δσεdx

∫ L

0

δP︸︷︷︸
δσ

P

AE︸︷︷︸
ε

dx

Flexure 1
2

∫ L

0

M2

EIz
dx

∫ L

0

Mδφdx

∫ L

0

EIz
d2v

dx2︸ ︷︷ ︸
σ

d2(δv)
dx2︸ ︷︷ ︸
δε

dx

∫ L

0

δMφdx

∫ L

0

δM︸︷︷︸
δσ

M

EIz︸︷︷︸
ε

dx

W Virtual Displacement δW Virtual Force δW ∗

P Σi
1
2Pi∆i ΣiPiδ∆i ΣiδPi∆i

M Σi
1
2Miθi ΣiMiδθi ΣiδMiθi

w

∫ L

0

w(x)v(x)dx
∫ L

0

w(x)δv(x)dx
∫ L

0

δw(x)v(x)dx

Table 13.3: Summary of Variational Terms Associated with One Dimensional Elements
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Appendix A

SHEAR, MOMENT and
DEFLECTION DIAGRAMS for
BEAMS

Adapted from [?] 1) Simple Beam; uniform Load

x

V

V

L / 2 L / 2

M max.

Moment

Shear

R R

w L

L

R = V

Vx = w
(
L

2
− x

)
at center Mmax =

wL2

8
Mx =

wx

2
(L− x)

∆max =
5

384

wL4

EI
∆x =

wx

24EI
(L3 − 2Lx2 + x3)

2) Simple Beam; Unsymmetric Triangular Load
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R1 = V1 =
W

3

Max R2 = V2 =
2W

3

Vx =
W

3
− Wx2

L2
at x = .577L Mmax = .1283WL

Mx =
Wx

3L2
(L2 − x2)

at x = .5193L ∆max = .01304
WL3

EI

∆x =
Wx3

180EIL2
(3x4 − 10L2x2 + 7L4)

3) Simple Beam; Symmetric Triangular Load

R = V =
W

2

for x < L
2

Vx =
W

2L2
(L2 − 4x2)

at center Mmax =
WL

6

for x < L
2

Mx = Wx

(
1

2
− 2

3

x2

L2

)
for x < L

2
∆x =

Wx

480EIL2
(5L2 − 4x2)2

∆max =
WL3

60EI

4) Simple Beam; Uniform Load Partially Distributed

Max when a < c R1 = V1 =
wb

2L
(2c+ b)

Max when a > c R2 = V2 =
wb

2L
(2a+ b)

when a < x < a + b Vx = R1 − w(x− a)
when x < a Mx = R1x

when a < x < a + b Mx = R1x−
w

2
(x− a)2

when a+ b < x Mx = R2(L− x)

at x = a+ R1

w
Mmax = R1

(
a+

R1
2w

)

5) Simple Beam; Concentrated Load at Center

Victor Saouma Introduction to Continuum Mechanics



Draft A–3

max R1 = V1 =
wa

2L
(2L− a)

R = V = 2P

at x = L
2

Mmax =
PL

4

when x < L
2

Mx =
Px

2

whenx < L
2

∆x =
Px

48EI
(3L2 − 4x2)

at x = L
2

∆max =
PL3

48EI

6) Simple Beam; Concentrated Load at Any Point

max when a < b R1 = V1 =
Pb

L

max when a > b R2 = V2 =
Pa

L

at x = a Mmax =
Pab

L

when x < a Mx =
Pbx

L

at x = a ∆a =
Pa2b2

3EIL

when x < a ∆x =
Pbx

6EIL
(L2 − b2 − x2)

at x =
√

a(a+2b)
3

& a > b ∆max =
Pab(a+ 2b)

√
3a(a + 2b)

27EIL

7) Simple Beam; Two Equally Concentrated Symmetric Loads

R = V = P
Mmax = Pa

∆max =
Pa

24EI
(3L2 − 4a2)

when x < a ∆x =
Px

6EI
(3La− 3a2 − x2)

when a < x < L− a ∆x =
Pa

6EI
(3Lx− 3x2 − a2)

8) Simple Beam; Two Equally Concentrated Unsymmetric Loads
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max when a < b R1 = V1 =
P

L
(L− a+ b)

max when b < a R2 = V2 =
P

L
(L− b+ a)

when a < x < L− b Vx =
P

L
(b− a)

max when b < a M1 = R1a
max when a < b M2 = R2b

when x < a Mx = R1x
when a < x < L− b Mx = R1x− P (x− a)

9) Cantilevered Beam, Uniform Load

R1 = V1 =
3

8
wL

R2 = V2 =
5

8
wL

Vx = R1 − wx

Mmax =
wL2

8

at x = 3
8
L M1 =

9

128
wL2

Mx = R1x−
wx2

2
∆x =

wx

48EI
(L3 − 3Lx+2x3)

at x = .4215L ∆max =
wL4

185EI

10) Propped Cantilever, Concentrated Load at Center

R1 = V1 =
5P

16

R2 = V2 =
11P

16

at x = L Mmax =
3PL

16

when x < L
2

Mx =
5Px

16

when L
2
< x Mx = P

(
L

2
− 11x

16

)
at x = .4472L ∆max = .009317

PL3

EI

11) Propped Cantilever; Concentrated Load
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R1 = V1 =
Pb2

2L3
(a+ 2L)

R2 = V2 =
Pa

2L3
(3L2 − a2)

at x = a M1 = R1a

at x = L M2 =
Pab

2L2
(a+ L)

at x = a ∆a =
Pa2b3

12EIL3
(3L+ a)

when a < .414L at x = L L2+a2

3L2−a2 ∆max =
Pa

3EI

(L2 − a2)3

(3L2 − a2)2

when .414L < a at x = L
√

a
2L+a

∆max =
Pab2

6EI

√
a

2L+ a2

12) Beam Fixed at Both Ends, Uniform Load

R = V =
wL

2

Vx = w
(
L

2
− x

)
at x = 0 and x = L Mmax =

wL2

12

at x = L
2

M =
wL2

24

at x = L
2

∆max =
wL4

384EI

∆x =
wx2

24EI
(L− x)2

13) Beam Fixed at Both Ends; Concentrated Load

R = V =
P

2

at x = L
2

Mmax =
PL

8

when x < L
2

Mx =
P

8
(4x− L)

at x = L
2

∆max =
PL3

192EI

when x < L
2

∆x =
Px2

48EI
(3L− 4x)

14) Cantilever Beam; Triangular Unsymmetric Load
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R = V =
8

3
W

Vx = W
x2

L2

at x = L Mmax =
WL

3

Mx =
Wx2

3L2

∆x =
W

60EIL2
(x5 − 5L2x+ 4L5)

at x = 0 ∆max =
WL3

15EI

15) Cantilever Beam; Uniform Load

R = V = wL
Vx = wx

Mx =
wx2

2

at x = L Mmax =
wL2

2
∆x =

w

24EI
(x4 − 4L3x+ 3L4)

at x = 0 ∆max =
wL4

8EI

16) Cantilever Beam; Point Load

R = V = P
at x = L Mmax = Pb

when a < x Mx = P (x− a)

at x = 0 ∆max =
Pb2

6EI
(3L− b)

at x = a ∆a =
Pb3

3EI

when x < a ∆x =
Pb2

6EI
(3L− 3x− b)

when a < x ∆x =
P (L− x)2

6EI
(3b− L+ x)

17) Cantilever Beam; Point Load at Free End
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R = V = P
at x = L Mmax = PL

Mx = Px

at x = 0 ∆max =
PL3

3EI

∆x =
P

6EI
(2L3 − 3L2x+ x3)

18) Cantilever Beam; Concentrated Force and Moment at Free End

R = V = P

Mx = P
(
L

2
− x

)
at x = 0 and x = L Mmax =

PL

2

at x = 0 ∆max =
PL3

12EI

∆x =
P (L− x)2

12EI
((L+ 2x)
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Appendix B

SECTION PROPERTIES

Section properties for selected sections are shown in Table B.1.
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b

y

x

h

Y

X

A = bh
x = b

2

y = h
2

Ix = bh3

12

Iy = hb3

12 b’
b

h’h

x

y

X

Y

A = bh− b′h′

x = b
2

y = h
2

Ix = bh3−b′h′3
12

Iy = hb3−h′b′3
12

h

b

Y

X
y

a

A = h(a+b)
2

y = h(2a+b)
3(a+b)

Ix = h3(a2+4ab+b2

36(a+b)

h

b

x

X
y

c

Y
A = bh

2

x = b+c
3

y = h
3

Ix = bh3

36

Iy = bh
36 (b

2 − bc+ c2)

X

Y

r

A = πr2 = πd2

4

Ix = Iy = πr4

4 = πd4

64

X

Y

rt A = 2πrt = πdt

Ix = Iy = πr3t = πd3t
8

b

b

a a

X

Y

A = πab

Ix = πab3

3

Iy = πba3

4

Table B.1: Section Properties
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Appendix C

MATHEMATICAL
PRELIMINARIES; Part IV
VARIATIONAL METHODS

Abridged section from author’s lecture notes in finite elements.

C.1 Euler Equation

20 The fundamental problem of the calculus of variation1 is to find a function u(x) such
that

Π =
∫ b

a
F (x, u, u′)dx (3.1)

is stationary. Or,

δΠ = 0 (3.2)

where δ indicates the variation

21 We define u(x) to be a function of x in the interval (a, b), and F to be a known function
(such as the energy density).

22 We define the domain of a functional as the collection of admissible functions belonging
to a class of functions in function space rather than a region in coordinate space (as is
the case for a function).

23 We seek the function u(x) which extremizes Π.

24 Letting ũ to be a family of neighbouring paths of the extremizing function u(x) and
we assume that at the end points x = a, b they coincide. We define ũ as the sum of the
extremizing path and some arbitrary variation, Fig. C.1.

ũ(x, ε) = u(x) + εη(x) = u(x) + δu(x) (3.3)
1Differential calculus involves a function of one or more variable, whereas variational calculus involves a function of a

function, or a functional.
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u, u

x
x=bx=cx=a

A

B

C

dx

du
u(x)

u(x)

Figure C.1: Variational and Differential Operators

where ε is a small parameter, and δu(x) is the variation of u(x)

δu = ũ(x, ε)− u(x) (3.4-a)

= εη(x) (3.4-b)

and η(x) is twice differentiable, has undefined amplitude, and η(a) = η(b) = 0. We
note that ũ coincides with u if ε = 0

25 The variational operator δ and the differential calculus operator d have clearly different
meanings. du is associated with a neighboring point at a distance dx, however δu is a
small arbitrary change in u for a given x (there is no associated δx).

26 For boundaries where u is specified, its variation must be zero, and it is arbitrary
elsewhere. The variation δu of u is said to undergo a virtual change.

27 To solve the variational problem of extremizing Π, we consider

Π(u+ εη) = Φ(ε) =
∫ b

a
F (x, u+ εη, u′ + εη′)dx (3.5)

28 Since ũ→ u as ε → 0, the necessary condition for Π to be an extremum is

dΦ(ε)

dε

∣∣∣∣∣
ε=0

= 0 (3.6)

29 From Eq. 3.3 and applying the chain rule with ε = 0, ũ = u, we obtain

dΦ(ε)

dε

∣∣∣∣∣
ε=0

=
∫ b

a

(
η
∂F

∂u
+ η′

∂F

∂u′

)
dx = 0 (3.7)

30 It can be shown (through integration by part and the fundamental lemma of the

Victor Saouma Introduction to Continuum Mechanics



DraftC.1 Euler Equation C–3

calculus of variation) that this would lead to

∂F

∂u
− d

dx

∂F

∂u′ = 0 (3.8)

31 This differential equation is called the Euler equation associated with Π and is a
necessary condition for u(x) to extremize Π.

32 Generalizing for a functional Π which depends on two field variables, u = u(x, y) and
v = v(x, y)

Π =
∫ ∫

F (x, y, u, v, u,x, u,y, v,x, v,y, · · · , v,yy)dxdy (3.9)

There would be as many Euler equations as dependent field variables
∂F
∂u

− ∂
∂x

∂F
∂u,x

− ∂
∂y

∂F
∂u,y

+ ∂2

∂x2
∂F
∂u,xx

+ ∂2

∂x∂y
∂F
∂u,xy

+ ∂2

∂y2
∂F
∂u,yy

= 0
∂F
∂v
− ∂

∂x
∂F
∂v,x

− ∂
∂y

∂F
∂v,y

+ ∂2

∂x2
∂F
∂v,xx

+ ∂2

∂x∂y
∂F
∂v,xy

+ ∂2

∂y2
∂F
∂v,yy

= 0
(3.10)

33 We note that the Functional and the corresponding Euler Equations, Eq. 3.1 and 3.8,
or Eq. 3.9 and 3.10 describe the same problem.

34 The Euler equations usually correspond to the governing differential equation and are
referred to as the strong form (or classical form).

35 The functional is referred to as the weak form (or generalized solution). This clas-
sification stems from the fact that equilibrium is enforced in an average sense over the
body (and the field variable is differentiated m times in the weak form, and 2m times in
the strong form).

36 Euler equations are differential equations which can not always be solved by exact
methods. An alternative method consists in bypassing the Euler equations and go directly
to the variational statement of the problem to the solution of the Euler equations.

37 Finite Element formulation are based on the weak form, whereas the formulation of
Finite Differences are based on the strong form.

38 Finally, we still have to define δΠ

δF = ∂F
∂u
δu+ ∂F

∂u′ δu
′

δΠ =
∫ b
a δFdx

}
δΠ =

∫ b

a

(
∂F

∂u
δu+

∂F

∂u′ δu
′
)
dx (3.11)

As above, integration by parts of the second term yields

δΠ =
∫ b

a
δu

(
∂F

∂u
− d

dx

∂F

∂u′

)
dx (3.12)

39 We have just shown that finding the stationary value of Π by setting δΠ = 0 is

equivalent to finding the extremal value of Π by setting dΦ(ε)
dε

∣∣∣
ε=0

equal to zero.

40 Similarly, it can be shown that as with second derivatives in calculus, the second vari-
ation δ2Π can be used to characterize the extremum as either a minimum or maximum.
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41 Revisiting the integration by parts of the second term in Eq. 3.7, we obtain

∫ b

a
η′
∂F

∂u′dx = η
∂F

∂u′

∣∣∣∣∣
b

a

−
∫ b

a
η
d

dx

∂F

∂u′dx (3.13)

We note that

1. Derivation of the Euler equation required η(a) = η(b) = 0, thus this equation is a
statement of the essential (or forced) boundary conditions, where u(a) = u(b) = 0.

2. If we left η arbitrary, then it would have been necessary to use ∂F
∂u′ = 0 at x = a and

b. These are the natural boundary conditions.

42 For a problem with, one field variable, in which the highest derivative in the governing
differential equation is of order 2m (or simply m in the corresponding functional), then
we have

Essential (or Forced, or geometric) boundary conditions, involve derivatives of or-
der zero (the field variable itself) through m-1. Trial displacement functions are
explicitely required to satisfy this B.C. Mathematically, this corresponds to Dirich-
let boundary-value problems.

Nonessential (or Natural, or static) boundary conditions, involve derivatives of or-
der m and up. This B.C. is implied by the satisfaction of the variational statement
but not explicitly stated in the functional itself. Mathematically, this corresponds
to Neuman boundary-value problems.

These boundary conditions were already introduced, albeit in a less formal way, in Table
9.1.

43 Table C.1 illustrates the boundary conditions associated with some problems

Problem Axial Member Flexural Member
Distributed load Distributed load

Differential Equation AE d2u
dx2 + q = 0 EI d

4w
dx4 − q = 0

m 1 2
Essential B.C. [0,m− 1] u w, dwdx
Natural B.C. [m, 2m− 1] du

dx
d2w
dx2 and d3w

dx3

or σx = Eu,x or M = EIw,xx and V = EIw,xxx

Table C.1: Essential and Natural Boundary Conditions

Example C-1: Extension of a Bar

The total potential energy Π of an axial member of length L, modulus of elasticity
E, cross sectional area A, fixed at left end and subjected to an axial force P at the right
one is given by

Π =
∫ L

0

EA

2

(
du

dx

)2
dx− Pu(L) (3.14)
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Determine the Euler Equation by requiring that Π be a minimum.
Solution:

Solution I The first variation of Π is given by

δΠ =
∫ L

0

EA

2
2

(
du

dx

)
δ

(
du

dx

)
dx− Pδu(L) (3.15)

Integrating by parts we obtain

δΠ =
∫ L

0
− d

dx

(
EA

du

dx

)
δudx+ EA

du

dx
δu

∣∣∣∣∣
L

0

− Pδu(L) (3.16-a)

= −
∫ L

0
δu

d

dx

(
EA

du

dx

)
︸ ︷︷ ︸ dx+

(
EA

du

dx

)∣∣∣∣∣
x=L

− P︸ ︷︷ ︸
 δu(L)

= −
(
EA

du

dx

)
︸ ︷︷ ︸

∣∣∣∣∣∣∣
x=0

δu(0) (3.16-b)

The last term is zero because of the specified essential boundary condition which
implies that δu(0) = 0. Recalling that δ in an arbitrary operator which can be
assigned any value, we set the coefficients of δu between (0, L) and those for δu at
x = L equal to zero separately, and obtain

Euler Equation:

− d

dx

(
EA

du

dx

)
= 0 0 < x < L (3.17)

Natural Boundary Condition:

EA
du

dx
− P = 0 at x = L (3.18)

Solution II We have

F (x, u, u′) =
EA

2

(
du

dx

)2
(3.19)

(note that since P is an applied load at the end of the member, it does not appear
as part of F (x, u, u′) To evaluate the Euler Equation from Eq. 3.8, we evaluate

∂F

∂u
= 0 &

∂F

∂u′ = EAu′ (3.20-a)

Thus, substituting, we obtain

∂F

∂u
− d

dx

∂F

∂u′ = 0 Euler Equation (3.21-a)

d

dx

(
EA

du

dx

)
= 0 B.C. (3.21-b)
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Example C-2: Flexure of a Beam

The total potential energy of a beam is given by

Π =
∫ L

0

(
1

2
Mκ− pw

)
dx =

∫ L

0

(
1

2
(EIw′′)w′′ − pw

)
dx (3.22)

Derive the first variational of Π.
Solution:
Extending Eq. 3.11, and integrating by part twice

δΠ =
∫ L

0
δFdx =

∫ L

0

(
∂F

∂w′′ δw
′′ +

∂F

∂w
δw

)
dx (3.23-a)

= =
∫ L

0
(EIw′′δw′′ − pδw)dx (3.23-b)

= (EIw′′δw′)|L0 −
∫ L

0
[(EIw′′)′δw′ − pδw] dx (3.23-c)

= (EIw′′δw′)|L0 − [(EIw′′)′δw]|L0 +
∫ L

0
[(EIw′′)′′ + p] δwdx = 0 (3.23-d)

Or
(EIw′′)′′ = −p for all x

which is the governing differential equation of beams and

Essential Natural
δw′ = 0 or EIw′′ = −M = 0
δw = 0 or (EIw′′)′ = −V = 0

at x = 0 and x = L
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Appendix D

MID TERM EXAM

Continuum Mechanics
LMC/DMX/EPFL

Prof. Saouma
Exam I (Closed notes), March 27, 1998

3 Hours

There are 19 problems worth a total of 63 points. Select any problems you want as long
as the total number of corresponding points is equal to or larger than 50.

1. (2 pts) Write in matrix form the following 3rd order tensor Dijk in R2 space. i, j, k
range from 1 to 2.

2. (2 pts) Solve for Eijai in indicial notation.

3. (4 pts) if the stress tensor at point P is given by

σ =

 10 −2 0
−2 4 1
0 1 6


determine the traction (or stress vector) t on the plane passing through P and parallel
to the plane ABC where A(6, 0, 0), B(0, 4, 0) and C(0, 0, 2).

4. (5 pts) For a plane stress problem charaterized by the following stress tensor

σ =

[
6 2
2 4

]

use Mohr’s circle to determine the principal stresses, and show on an appropriate
figure the orientation of those principal stresses.

5. (4 pts) The stress tensor throughout a continuum is given with respect to Cartesian
axes as

σ =

 3x1x2 5x22 0
5x22 0 2x23
0 2x23 0


(a) Determine the stress vector (or traction) at the point P (2, 1,

√
3) of the plane

that is tangent to the cylindrical surface x22 + x23 = 4 at P ,
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n

1

2 3

x

x

x

1

2

3

P

(b) Are the stresses in equlibrium, explain.

6. (2 pts) A displacement field is given by u = X1X
2
3e1+X2

1X2e2+X2
2X3e3, determine

the material deformation gradient F and the material displacement gradient J, and
verify that J = F− I.

7. (4 pts) A continuum body undergoes the deformation x1 = X1+AX2, x2 = X2+AX3,
and x3 = X3 + AX1 where A is a constant. Determine: 1) Deformation (or Green)
tensor C; and 2) Lagrangian tensor E.

8. (4 pts) Linear and finite strain tensors can be decomposed into the sum or product
of two other tensors.

(a) Which strain tensor can be decomposed into a sum, and which other one into a
product.

(b) Why is such a decomposition performed?

9. (2 pts) Why do we have a condition imposed on the strain field (compatibility equa-
tion)?

10. (6 pts) Stress tensors:

(a) When shall we use the Piola-Kirchoff stress tensors?

(b) What is the difference between Cauchy, first and second Piola-Kirchoff stress
tensors?

(c) In which coordinate system is the Cauchy and Piola-Kirchoff stress tensors ex-
pressed?

11. (2 pts) What is the difference between the tensorial and engineering strain (Eij , γij, i �=
j) ?

12. (3 pts) In the absence of body forces, does the following stress distribution x22 + ν(x21 − x2x) −2νx1x2 0
−2νx1x2 x21 + ν(x22 − x21) 0

0 0 ν(x21 + x22)


where ν is a constant, satisfy equilibrium in the X1 direction?

13. (2 pts) From which principle is the symmetry of the stress tensor derived?

14. (2 pts) How is the First principle obtained from the equation of motion?

15. (4 pts) What are the 1) 15 Equations; and 2) 15 Unknowns in a thermoelastic
formulation.
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16. (2 pts) What is free energy Ψ?

17. (2 pts) What is the relationship between strain energy and strain?

18. (5 pts) If a plane of elastic symmetry exists in an anisotropic material,

T11
T22
T33
T12
T23
T31


=



c1111 c1112 c1133 c1112 c1123 c1131
c2222 c2233 c2212 c2223 c2231

c3333 c3312 c3323 c3331
c1212 c1223 c1231

SYM. c2323 c2331
c3131





E11
E22
E33

2E12(γ12)
2E23(γ23)
2E31(γ31)


then,

aji =

 1 0 0
0 1 0
0 0 −1


show that under these conditions c1131 is equal to zero.

19. (6 pts) The state of stress at a point of structural steel is given by

T =

 6 2 0
2 −3 0
0 0 0

MPa

with E = 207 GPa, µ = 80 GPa, and ν = 0.3.

(a) Determine the engineering strain components

(b) If a five centimer cube of structural steel is subjected to this stress tensor, what
would be the change in volume?
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Appendix E

MATHEMATICA ASSIGNMENT
and SOLUTION

Connect to Mathematica using the following procedure:

1. login on an HP workstation

2. Open a shell (window)

3. Type xhost+

4. type rlogin mxsg1

5. On the newly opened shell, enter your password first, and then type setenv DISPLAY

xxx:0.0 where xxx is the workstation name which should appear on a small label
on the workstation itself.

6. Type mathematica &

and then solve the following problems:

1. The state of stress through a continuum is given with respect to the cartesian axes
Ox1x2x3 by

Tij =

 3x1x2 5x22 0
5x22 0 2x3
0 2x3 0

MPa

Determine the stress vector at point P (1, 1,
√
3) of the plane that is tangent to the

cylindrical surface x22 + x23 = 4 at P .

2. For the following stress tensor

Tij =

 6 −3 0
−3 6 0
0 0 8


(a) Determine directly the three invariants Iσ, IIσ and IIIσ of the following stress

tensor

(b) Determine the principal stresses and the principal stress directions.

(c) Show that the transformation tensor of direction cosines transforms the original
stress tensor into the diagonal principal axes stress tensor.

(d) Recompute the three invariants from the principal stresses.
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(e) Split the stress tensor into its spherical and deviator parts.

(f) Show that the first invariant of the deviator is zero.

3. The Lagrangian description of a deformation is given by x1 = X1 + X3(e
2 − 1),

x2 = X2 + X3(e
2 − e−2, and x3 = e2X3 where e is a constant. SHow that the

Jacobian J does not vanish and determine the Eulerian equations describing this
motion.

4. A displacement field is given by u = X1X
2
3e1 + X2

1X2e2 + X2
2X3e3. Determine

independently the material deformation gradient F and the material displacement
gradient J and verify that J = F− I.

5. A continuum body undergoes the deformation x1 = X1, x2 = X2 + AX3, x3 =
X3 + AX2 where A is a constant. Compute the deformation tensor C and use this
to determine the Lagrangian finite strain tensor E.

6. A continuum body undergoes the deformation x1 = X1 + AX2, x2 = X2 + AX3,
x3 = X3 + AX2 where A is a constant.

(a) Compute the deformation tensor C

(b) Use the computed C to determine the Lagrangian finite strain tensor E.

(c) COmpute the Eulerian strain tensor E∗ and compare with E for very small values
of A.

7. A continuum body undergoes the deformation x1 = X1 + 2X2, x2 = X2, x3 = X3

(a) Determine the Green’s deformation tensor C

(b) Determine the principal values of C and the corresponding principal directions.

(c) Determine the right stretch tensor U and U−1 with respect to the principal
directions.

(d) Determine the right stretch tensor U and U−1 with respect to the ei basis.

(e) Determine the orthogonal rotation tensor R with respect to the ei basis.

8. A continuum body undergoes the deformation x1 = 4X1, x2 = −1
2
X2, x3 = −1

2
X3

and the Cauchy stress tensor for this body is

Tij =

 100 0 0
0 0 0
0 0 0

MPa

(a) Determine the corresponding first Piola-Kirchoff stress tensor.

(b) Determine the corresponding second Piola-Kirchoff stress tensor.

(c) Determine the pseudo stress vector associated with the first Piola-Kirchoff stress
tensor on the e1 plane in the deformed state.

(d) Determine the pseudo stress vector associated with the second Piola-Kirchoff
stress tensor on the e1 plane in the deformed state.

9. Show that in the case of isotropy, the anisotropic stress-strain relation

cAniso

ijkm =



c1111 c1112 c1133 c1112 c1123 c1131
c2222 c2233 c2212 c2223 c2231

c3333 c3312 c3323 c3331
c1212 c1223 c1231

SYM. c2323 c2331
c3131


Victor Saouma Introduction to Continuum Mechanics



Draft E–3

reduces to

ciso

ijkm =



c1111 c1122 c1133 0 0 0
c2222 c2233 0 0 0

c3333 0 0 0
a 0 0

SYM. b 0
c


with a = 1

2
(c1111 − c1122), b =

1
2
(c2222 − c2233), and c = 1

2
(c3333 − c1133).

10. Determine the stress tensor at a point where the Lagrangian strain tensor is given
by

Eij =

 30 50 20
50 40 0
20 0 30

× 10−6

and the material is steel with λ = 119.2 GPa and µ = 79.2 GPa.

11. Determine the strain tensor at a point where the Cauchy stress tensor is given by

Tij =

 100 42 6
42 −2 0
6 0 15

MPa

with E = 207 GPa, µ = 79.2 GPa, and ν = 0.30

12. Determine the thermally induced stresses in a constrained body for a rise in temer-
ature of 50oF , α = 5.6× 10−6/ 0F

13. Show that the inverse of
εxx
εyy
εzz

γxy(2εxy)
γyz(2εyz)
γzx(2εzx)

 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν




σxx
σyy
σzz
τxy
τyz
τzx

 (5.1)

is 
σxx
σyy
σzz
τxy
τyz
τzx

 =


E

(1+ν)(1−2ν)

[
1− ν ν ν
ν 1− ν ν
ν ν 1− ν

]
0

0 G

[
1 0 0
0 1 0
0 0 1

]



εxx
εyy
εzz

γxy(2εxy)
γyz(2εyz)
γzx(2εzx)

 (5.2)

and then derive the relations between stresses in terms of strains, and strains in terms of stress, for
plane stress and plane strain.

14. Show that the function Φ = f(r) cos 2θ satisfies the biharmonic equation ∇(∇Φ) = 0 Note: You
must <<Calculus‘VectorAnalysis‘, define Φ, and SetCoordinates[Cylindrical[r,θ,z]], and
finally use the Laplacian (or Biharmonic) functions.

15. Solve for [
Trr Trθ
Trθ Tθθ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
σ0 0
0 0

] [
cos θ − sin θ
sin θ cos θ

]T
(5.3)

16. If a point load p is applied on a semi-infinite medium
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θ

1

p

r

show that for Φ = − p
πrθ sin θ we have the following stress tensors:[

− 2p
π

cos θ
r 0

0 0

]
=

[
− 2p cos3 θ

πr − 2p sin θ cos2 θ
πr

− 2p sin θ cos2 θ
πr − 2p sin2 θ cos θ

πr

]
(5.4)

Determine the maximum principal stress at an y arbitrary point, (contour) plot the magnitude of
this stress below p. Note that D[Φ,r], D[Φ,{θ,2}] would give the first and second derivatives of
Φ with respect to r and θ respectively.
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